• Title/Summary/Keyword: Artificial River

Search Result 464, Processing Time 0.304 seconds

Forecasting River Water Levels in the Bac Hung Hai Irrigation System of Vietnam Using an Artificial Neural Network Model

  • Hung Viet Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.37-37
    • /
    • 2023
  • There is currently a high-accuracy modern forecasting method that uses machine learning algorithms or artificial neural network models to forecast river water levels or flowrate. As a result, this study aims to develop a mathematical model based on artificial neural networks to effectively forecast river water levels upstream of Tranh Culvert in North Vietnam's Bac Hung Hai irrigation system. The mathematical model was thoroughly studied and evaluated by using hydrological data from six gauge stations over a period of twenty-two years between 2000 and 2022. Furthermore, the results of the developed model were also compared to those of the long-short-term memory neural networks model. This study performs four predictions, with a forecast time ranging from 6 to 24 hours and a time step of 6 hours. To validate and test the model's performance, the Nash-Sutcliffe efficiency coefficient (NSE), mean absolute error, and root mean squared error were calculated. During the testing phase, the NSE of the model varies from 0.981 to 0.879, corresponding to forecast cases from one to four time steps ahead. The forecast results from the model are very reasonable, indicating that the model performed excellently. Therefore, the proposed model can be used to forecast water levels in North Vietnam's irrigation system or rivers impacted by tides.

  • PDF

A Study on Development of Long-Term Runoff Model for Water Resources Planning and Management (수자원의 이용계획을 위한 장기유출모형의 개발에 관한 연구)

  • Cho, Hyeon-Kyeong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.16 no.3
    • /
    • pp.61-68
    • /
    • 2013
  • Long-term runoff model can be used to establish the effective plan of water reources allocation and the determination of the storage capacity of reservoir. So this study aims at the development of monthly runoff model using artificial neural network technique. For this, it was selected multi-layer neural network(MLN) and radial basis function neural network(RFN) model. In this study, it was applied model to analysis monthly runoff process at the Wi stream basin in Nakdong river which is representative experimental river basin of IHP. For this, multi-layer neural network model tried to construct input 3, hidden 7, and output 1 for each number of layer. As the result of analysis of monthly runoff process using models connected with artificial neural network technique, it showed that these models were effective in the simulation of monthly runoff.

Prediction of Dissolved Oxygen at Anyang-stream using XG-Boost and Artificial Neural Networks

  • Keun Young Lee;Bomchul Kim;Gwanghyun Jo
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.2
    • /
    • pp.133-138
    • /
    • 2024
  • Dissolved oxygen (DO) is an important factor in ecosystems. However, the analysis of DO is frequently rather complicated because of the nonlinear phenomenon of the river system. Therefore, a convenient model-free algorithm for DO variable is required. In this study, a data-driven algorithm for predicting DO was developed by combining XGBoost and an artificial neural network (ANN), called ANN-XGB. To train the model, two years of ecosystem data were collected in Anyang, Seoul using the Troll 9500 model. One advantage of the proposed algorithm is its ability to capture abrupt changes in climate-related features that arise from sudden events. Moreover, our algorithm can provide a feature importance analysis owing to the use of XGBoost. The results obtained using the ANN-XGB algorithm were compared with those obtained using the ANN algorithm in the Results Section. The predictions made by ANN-XGB were mostly in closer agreement with the measured DO values in the river than those made by the ANN.

Assessment of Physical River Disturbances in the Namgang-dam Downstream (남강댐하류의 물리적 하천교란 평가)

  • Kim, Ki-Heung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.3
    • /
    • pp.74-86
    • /
    • 2008
  • To assessment the disturbances of the Namgang caused by dam construction, upstream area was selected for the reference reach and downstream area was selected for the comparison reach. And these reaches were surveyed and analyzed according to the assessment criteria of the river disturbances.The artificial factors of river disturbances were classified as river improvement works, dam construction and aggregate dredging. The indexes were physical factors as like epifaunal (bottom), embeddedness, velocity/depth regime, sediment deposition, channel flow status, channel alteration, frequency of riffles, bank stability, vegetative protection, riparian zone etc.The assessment results showed 46% of the assessment criteria which was serious status in dam downstream area and 89.5% of it which was excellent status in dam upstream.Finally, the results showed that physical river environment in downstream area was disturbed by the discharge control and the interception of sediment discharge by dam, consequently this disturbance give rise to impact of ecosystem in river.

Analysis of River Disturbance using a GIS(II) (GIS기법을 이용한 하천 교란 실태의 분석(II))

  • Park, Eun-Ji;Kim, Kye-Hyun;Jang, Chang-Lae
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.4
    • /
    • pp.27-35
    • /
    • 2008
  • Current re-arrangement of rivers and waterways have been made uniformly ignoring characteristics of individual rivers thereby aggravating artificial river restructuring. On the contrary, quantitative techniques to evaluate the aftermath of artificial river disturbance such as uprising of river bed, intrusion of foreign fisheries, and changes of ecological habitats are not available. To establish such quantitative techniques, analysis of the river changes to evaluate the major causes of the river disturbance and its impacts is essential. Therefore, research for proposing a method which can be applied for the development of techniques to investigate river disturbance according to the major factors for the domestic rivers using airphotos and GIS techniques was preceded. In this study, the study area on the downstream of the river was selected and analysis of river disturbance using preceding method was done to confirm the benefit of analyzing river disturbance using GIS techniques. Trend analysis of the waterway sinuosity and changes of the flow path leaded to detailed verification of the river disturbance for specific location or time period, and this enabled to generate relatively accurate numbers representing sinuosity of the waterway and relevant changes. Also, it is possible to predict the effect on the current re-arrangement of the river and waterway to river flow using the analysis of past river change. It is necessary to establish GIS based proper measures for environmental river restoration using the results from this study and future works.

  • PDF

Analysis of River Disturbance using a GIS (I) (GIS기법을 이용한 하천 교란 실태의 분석(I))

  • Park, Eun-Ji;Kim, Kye-Hyun;Lee, On-Kil
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.2
    • /
    • pp.81-93
    • /
    • 2008
  • Current re-arrangement of river and waterway has been made uniformly ignoring characteristics of individual rivers thereby aggravating artificial river restructuring. Subsequently this severely affects the rivers' physical, chemical, and biological phenomenon. On the contrary, quantitative techniques to evaluate the aftermath of artificial river disturbance such as uprising of river bed, intrusion of foreign fisheries, and changes of ecological habitats are not available. To establish such quantitative techniques, analysis of river changes to evaluate the major causes of the river disturbance and its impacts is essential. Therefore, this study mainly focused on proposing a method which can be applied for the development of techniques to investigate river disturbance according to the major factors for the domestic rivers using airphotos and GIS techniques. For the analysis, the study area on the downstream of the river was selected and airphotos of the area were converted into GIS format to generate 'shape' files to secure waterways, river banks, and auxiliary data required for analyzing river disturbance. Trend analysis of the waterway sinuosity and changes of the flow path leaded to detailed verification of the river disturbance for specific location or time period, and this enabled to relatively accurate numbers representing sinuosity of the waterway and relevant changes. As the major results from the analysis, the relocation of waterways and the level of river sinuosity were quantified and used to verify the impacts on the stability of the waterways especially in the downstream of the dam. The results from this study enabled effective establishing proper measures against waterways' unstability, and emphasized subsequent researches for identifying better alternatives against river disturbances.

  • PDF

Channel Evaluation for Abandoned Channel Restoration Using Image Analysis Technique (영상분석기법을 이용한 구하도 복원 대상하천의 하도평가)

  • Hong, Il;Kang, Joon-Gu;Kwon, Bo-Ae;Yeo, Hong-Koo
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.5
    • /
    • pp.397-406
    • /
    • 2009
  • River is able to change by various environmental factors. In order to conduct restoration design of abandoned river channels, it is necessary to evaluate the river through the analysis of past and present river channels. River evaluation requires various data, such as geometry, hydraulic and hydrology, but there is a lot of difficulty to understand topographical information of river change on time and space due to a lack of past data by domestic conditions. This study analyzes the changes in past and present river channels and examines the applicability of river channel evaluation through image analysis using aerial photographs and 1918 year's map. Aerial photograph analysis was conducted by applying the image analysis method and GIS analysis method on Cheongmicheon. As a result of this analysis, we have quantitatively identified the form and size of abandoned channels, changes in the vertical-section and cross-section length of rivers, and micro-landform changes. More importantly, we verified that morphological changes in sandbars due to artificial straightening are important data in identifying the state of current river channels. In these results, although image analysis technique has limitations in two-dimensional information from aerial photographs, we were able to evaluate the changes in river channel morphology after artificial maintenance of the river.

The Activity and Structure of Bacterial Community within Artificial Vegetation Island (AVI) (인공 수초재배섬에서 세균의 활성과 세균 군집 구조)

  • Jeon, Nam-Hui;Park, Hae-Kyung;Byeon, Myeong-Seop;Choi, Myung-Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.676-682
    • /
    • 2007
  • The bacterial number, extracellular enzyme activities and structure of bacterial community which are major constituent of aquatic ecosystem within the artificial vegetation island (AVI) were compared to those of the nearby pelagic lake waters in order to evaluate the possibility of the AVI as a eco-technological measure for water quality improvement and restoration of littoral zone in man-made reservoirs. There was not a significant difference in the total number of bacteria, but the number of active (viable) bacteria within the AVI was about 0.7 to 4.1 times higher than nearby pelagic lake water. The ratio of the number of active bacteria versus the total number of bacteria was also higher in the AVI than nearby pelagic lake water. The activities of ${\beta}$-glucosidase and phosphatase were 1.0 to 13.1 and 0.8 to 7.3 times higher respectively in the AVI than nearby pelagic lake water, showing that microorganisms were more active within the AVI. The bacterial communities of the two waters, examined by FISH method, did not indicate a clear difference in the springtime when the growth of macrophytes was immature, but during summer and fall it showed a clear difference indicating the formation of distinct bacterial community within the AVI compared to nearby lake water. From the results of this study, we conclude that AVI can contribute to make up the littoral ecosystem which show rapid cycling of matters through active detritus food chain in the dam reservoirs which have unstable aquatic ecosystem due to short hydraulic residence time and to strengthen the self-purification capacity of the lake.

Comparison of the Growth of Hydrophytes, Aquatic Biota and Absorption of Nutrient depending on the Planting Mat Type of Artificial Vegetation Island (인공수초재배섬 식생기반재 종류에 따른 물질 흡착량 및 생물상, 식재식물 성장 비교)

  • Choi, Myung-Jae;Park, Hae-Kyung;Byeon, Myeong-Seop;Jeon, Nam-Hui;Yun, Seok-Hwan
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.52-60
    • /
    • 2010
  • We investigated temporal changes of growth of hydrophytes, aquatic biota and absorption of nutrient depending on planting mat type (synthetic fiber, coconut fiber) of artificial vegetation island (AVI) through pilot test using AVI miniatures in Kyungan Stream area of Lake Paldang. There were not significant differences of the water quality parameters (DO, pH, conductivity, turbidity, temperature), phytoplankton and zooplankton abundance among AVI miniatures and control station. The benthic macroinvertebrates showed most individual numbers in the miniature which was made by synthetic fiber and planted with Phragmites australis. The average and maximum height of hydrophytes in AVI miniatures was similar except one miniature where Phragmites australis was planted in synthetic fiber mat and grew more slowly. The adsorbed amount of nutrients and microbes in coconut fiber mat were larger than those in synthetic fiber mat regardless of trophic state of installed waterbody. The continuous increase of adsorbed amount of nutrients and microbes of coconut fiber mat for 8 months in an oligotrophic lake indicates that coconut fiber mat is suitable for the planting mat of AVI in an oligotrophic lake where nutrients are limited for growth of hydrophytes.

Effects of Sand Supply and Artificial Floods on Periphyton in the Downstream of a Dam (Yangyang Dam, Korea) (모래 공급과 인공 홍수가 양양댐 하류하천의 부착조류에 미치는 영향)

  • Park, Misook;Lee, Jaeyong;Jung, Sungmin;Park, Chang-Keun;Chang, Kun;Kim, Bomchul
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.418-425
    • /
    • 2012
  • Dam construction in a river can change its hydrological pattern and trap sediments, which results in ecological changes in the downstream. It is a common phenomenon in the downstream of dams to have decreased sediment flow and increased periphyton. Artificial floods and sediment application are suggested as mitigation practices in order to simulate natural process of flood; transporting sediment and sloughing periphyton off. In this study the effects of artificial floods on periphyton were examined by applying sand artificially and discharging water from a dam (Yangyang Dam, Korea). The study area has been suffering from turbidity problems caused by shore erosion of the dam. The accumulation of inorganic sediments and increase of periphyton on the river bottom are the major factors of habitat deterioration in the downstream reaches. Artificial flood and artificial addition of sand was performed in summer and the effects were measured. Piles of applied sands were washed off easily by discharge and it enhanced the periphyton sloughing effect. The removal efficiency of periphyton was 50 ~ 80% within the 2 km reach from the dam. In conclusion artificial floods and sand application can be a good mitigation measure for the habitat rehabilitation after a dam construction in streams.