• 제목/요약/키워드: Artificial Neural network

검색결과 3,137건 처리시간 0.027초

DEVELOPMENT OF GREEN'S FUNCTION APPROACH CONSIDERING TEMPERATURE-DEPENDENT MATERIAL PROPERTIES AND ITS APPLICATION

  • Ko, Han-Ok;Jhung, Myung Jo;Choi, Jae-Boong
    • Nuclear Engineering and Technology
    • /
    • 제46권1호
    • /
    • pp.101-108
    • /
    • 2014
  • About 40% of reactors in the world are being operated beyond design life or are approaching the end of their life cycle. During long-term operation, various degradation mechanisms occur. Fatigue caused by alternating operational stresses in terms of temperature or pressure change is an important damage mechanism in continued operation of nuclear power plants. To monitor the fatigue damage of components, Fatigue Monitoring System (FMS) has been installed. Most FMSs have used Green's Function Approach (GFA) to calculate the thermal stresses rapidly. However, if temperature-dependent material properties are used in a detailed FEM, there is a maximum peak stress discrepancy between a conventional GFA and a detailed FEM because constant material properties are used in a conventional method. Therefore, if a conventional method is used in the fatigue evaluation, thermal stresses for various operating cycles may be calculated incorrectly and it may lead to an unreliable estimation. So, in this paper, the modified GFA which can consider temperature-dependent material properties is proposed by using an artificial neural network and weight factor. To verify the proposed method, thermal stresses by the new method are compared with those by FEM. Finally, pros and cons of the new method as well as technical findings from the assessment are discussed.

Case-based reasoning approach to estimating the strength of sustainable concrete

  • Koo, Choongwan;Jin, Ruoyu;Li, Bo;Cha, Seung Hyun;Wanatowski, Dariusz
    • Computers and Concrete
    • /
    • 제20권6호
    • /
    • pp.645-654
    • /
    • 2017
  • Continuing from previous studies of sustainable concrete containing environmentally friendly materials and existing modeling approach to predicting concrete properties, this study developed an estimation methodology to predicting the strength of sustainable concrete using an advanced case-based reasoning approach. It was conducted in two steps: (i) establishment of a case database and (ii) development of an advanced case-based reasoning model. Through the experimental studies, a total of 144 observations for concrete compressive strength and tensile strength were established to develop the estimation model. As a result, the prediction accuracy of the A-CBR model (i.e., 95.214% for compressive strength and 92.448% for tensile strength) performed superior to other conventional methodologies (e.g., basic case-based reasoning and artificial neural network models). The developed methodology provides an alternative approach in predicting concrete properties and could be further extended to the future research area in durability of sustainable concrete.

Modeling the Density and Hardness of AA2024-SiC Nanocomposites

  • Jeon, A-Hyun;Kim, Hong In;Sung, Hyokyung;Reddy, N.S.
    • 한국분말재료학회지
    • /
    • 제26권4호
    • /
    • pp.275-281
    • /
    • 2019
  • An artificial neural network (ANN) model is developed for the analysis and simulation of correlation between flake powder metallurgy parameters and properties of AA2024-SiC nanocomposites. The input parameters of the model are AA 2024 matrix size, ball milling time, and weight percentage of SiC nanoparticles and the output parameters are density and hardness. The model can predict the density and hardness of the unseen test data with a correlation of 0.986 beyond the experimental data. A user interface is designed to predict properties at new instances. We have used the model to simulate the individual as well as the combined influence of parameters on the properties. Moreover, we have analyzed the calculated results from the powder metallurgical point of view. The developed model can be used as a guide for further composite development.

Mask R-CNN을 이용한 물체인식 및 개체분할의 학습 데이터셋 자동 생성 (Automatic Dataset Generation of Object Detection and Instance Segmentation using Mask R-CNN)

  • 조현준;김다윗;송재복
    • 로봇학회논문지
    • /
    • 제14권1호
    • /
    • pp.31-39
    • /
    • 2019
  • A robot usually adopts ANN (artificial neural network)-based object detection and instance segmentation algorithms to recognize objects but creating datasets for these algorithms requires high labeling costs because the dataset should be manually labeled. In order to lower the labeling cost, a new scheme is proposed that can automatically generate a training images and label them for specific objects. This scheme uses an instance segmentation algorithm trained to give the masks of unknown objects, so that they can be obtained in a simple environment. The RGB images of objects can be obtained by using these masks, and it is necessary to label the classes of objects through a human supervision. After obtaining object images, they are synthesized with various background images to create new images. Labeling the synthesized images is performed automatically using the masks and previously input object classes. In addition, human intervention is further reduced by using the robot arm to collect object images. The experiments show that the performance of instance segmentation trained through the proposed method is equivalent to that of the real dataset and that the time required to generate the dataset can be significantly reduced.

7포커 인공지능 시뮬레이터 구현 (Development of Artificial Intelligence Simulator of Seven Ordinary Poker Game)

  • 허종문;원재연;조재희;노영주
    • 한국인터넷방송통신학회논문지
    • /
    • 제18권6호
    • /
    • pp.277-283
    • /
    • 2018
  • 일부의 혁신적인 사람들은 스스로 생각하는 컴퓨터에 대한 환상을 꿈꾸며, 그 능력을 부여하는 방법을 꾸준히 연구하여왔다. 그런데 알파고의 등장 이후 그 환상이 마냥 허황된 생각만은 아님을 간접적으로 느낄 수 있었고, 이제는 컴퓨터를 전공하는 대부분의 학생들은 그 방법을 공부할 만큼 일반화 되어가고 있다. 딥 러닝에 대한 사람들의 관심이 커지면서 그로 인해 머신러닝에 대한 발전 가능성 또한 많은 사람들이 기대하고 있다. 이번 연구에서는 포커게임을 매개로 하여 머신러닝 기술을 적용하여 시스템의 게임능력을 개선해 보려 하였고, 또한 얼굴 표정에 따른 감정의 변화 분석을 활용하여 게임의 완성도 또한 높여 보았다.

지식기반형 NATM 라이닝 최적 설계 시스템 개발 (Development of Knowledge-based Study on Optimized NATM Lining Design System)

  • 송주상;유충식
    • 한국지반신소재학회논문집
    • /
    • 제17권4호
    • /
    • pp.251-265
    • /
    • 2018
  • 본 연구에서는 해저 터널의 특수성을 고려한 NATM 2차 라이닝의 최적 설계 시스템을 개발하였다. 해저 터널은 일반적으로 일정 수압 하의 토사나 암반 등으로 구성된 해저 지반 내에 시공된다. 본 설계 시스템은 특정 해저 터널 단면에서의 지반 조건, 시공 조건 및 터널 조건을 고려하여 인공신경망 기반의 라이닝 부재력 예측 시스템을 구축하고, 시공성이 확보된 단면 DB를 구축하여 해저터널에서 최적 단면 설계가 가능하도록 구성하였다. 단면 검토 및 설계에 사용되는 라이닝 부재력 예측은 유한요소해석을 토대로 구축한 인공신경망을 통해 일반화한 후 별도의 추가 해석이 필요없이 유사 단면의 해저 터널 설계에 적용이 가능하도록 하였다.

딥 러닝 기반의 악성흑색종 분류를 위한 컴퓨터 보조진단 알고리즘 (A Computer Aided Diagnosis Algorithm for Classification of Malignant Melanoma based on Deep Learning)

  • 임상헌;이명숙
    • 디지털산업정보학회논문지
    • /
    • 제14권4호
    • /
    • pp.69-77
    • /
    • 2018
  • The malignant melanoma accounts for about 1 to 3% of the total malignant tumor in the West, especially in the US, it is a disease that causes more than 9,000 deaths each year. Generally, skin lesions are difficult to detect the features through photography. In this paper, we propose a computer-aided diagnosis algorithm based on deep learning for classification of malignant melanoma and benign skin tumor in RGB channel skin images. The proposed deep learning model configures the tumor lesion segmentation model and a classification model of malignant melanoma. First, U-Net was used to segment a skin lesion area in the dermoscopic image. We could implement algorithms to classify malignant melanoma and benign tumor using skin lesion image and results of expert's labeling in ResNet. The U-Net model obtained a dice similarity coefficient of 83.45% compared with results of expert's labeling. The classification accuracy of malignant melanoma obtained the 83.06%. As the result, it is expected that the proposed artificial intelligence algorithm will utilize as a computer-aided diagnosis algorithm and help to detect malignant melanoma at an early stage.

Rockfall Source Identification Using a Hybrid Gaussian Mixture-Ensemble Machine Learning Model and LiDAR Data

  • Fanos, Ali Mutar;Pradhan, Biswajeet;Mansor, Shattri;Yusoff, Zainuddin Md;Abdullah, Ahmad Fikri bin;Jung, Hyung-Sup
    • 대한원격탐사학회지
    • /
    • 제35권1호
    • /
    • pp.93-115
    • /
    • 2019
  • The availability of high-resolution laser scanning data and advanced machine learning algorithms has enabled an accurate potential rockfall source identification. However, the presence of other mass movements, such as landslides within the same region of interest, poses additional challenges to this task. Thus, this research presents a method based on an integration of Gaussian mixture model (GMM) and ensemble artificial neural network (bagging ANN [BANN]) for automatic detection of potential rockfall sources at Kinta Valley area, Malaysia. The GMM was utilised to determine slope angle thresholds of various geomorphological units. Different algorithms(ANN, support vector machine [SVM] and k nearest neighbour [kNN]) were individually tested with various ensemble models (bagging, voting and boosting). Grid search method was adopted to optimise the hyperparameters of the investigated base models. The proposed model achieves excellent results with success and prediction accuracies at 95% and 94%, respectively. In addition, this technique has achieved excellent accuracies (ROC = 95%) over other methods used. Moreover, the proposed model has achieved the optimal prediction accuracies (92%) on the basis of testing data, thereby indicating that the model can be generalised and replicated in different regions, and the proposed method can be applied to various landslide studies.

CCTV-Based Multi-Factor Authentication System

  • Kwon, Byoung-Wook;Sharma, Pradip Kumar;Park, Jong-Hyuk
    • Journal of Information Processing Systems
    • /
    • 제15권4호
    • /
    • pp.904-919
    • /
    • 2019
  • Many security systems rely solely on solutions based on Artificial Intelligence, which are weak in nature. These security solutions can be easily manipulated by malicious users who can gain unlawful access. Some security systems suggest using fingerprint-based solutions, but they can be easily deceived by copying fingerprints with clay. Image-based security is undoubtedly easy to manipulate, but it is also a solution that does not require any special training on the part of the user. In this paper, we propose a multi-factor security framework that operates in a three-step process to authenticate the user. The motivation of the research lies in utilizing commonly available and inexpensive devices such as onsite CCTV cameras and smartphone camera and providing fully secure user authentication. We have used technologies such as Argon2 for hashing image features and physically unclonable identification for secure device-server communication. We also discuss the methodological workflow of the proposed multi-factor authentication framework. In addition, we present the service scenario of the proposed model. Finally, we analyze qualitatively the proposed model and compare it with state-of-the-art methods to evaluate the usability of the model in real-world applications.

Moment-rotation prediction of precast beam-to-column connections using extreme learning machine

  • Trung, Nguyen Thoi;Shahgoli, Aiyoub Fazli;Zandi, Yousef;Shariati, Mahdi;Wakil, Karzan;Safa, Maryam;Khorami, Majid
    • Structural Engineering and Mechanics
    • /
    • 제70권5호
    • /
    • pp.639-647
    • /
    • 2019
  • The performance of precast concrete structures is greatly influenced by the behaviour of beam-to-column connections. A single connection may be required to transfer several loads simultaneously so each one of those loads must be considered in the design. A good connection combines practicality and economy, which requires an understanding of several factors; including strength, serviceability, erection and economics. This research work focuses on the performance aspect of a specific type of beam-to-column connection using partly hidden corbel in precast concrete structures. In this study, the results of experimental assessment of the proposed beam-to-column connection in precast concrete frames was used. The purpose of this research is to develop and apply the Extreme Learning Machine (ELM) for moment-rotation prediction of precast beam-to-column connections. The ELM results are compared with genetic programming (GP) and artificial neural network (ANN). The reliability of the computational models was accessed based on simulation results and using several statistical indicators.