• Title/Summary/Keyword: Artificial Life Algorithm

Search Result 102, Processing Time 0.026 seconds

Predicting patient experience of Invisalign treatment: An analysis using artificial neural network

  • Xu, Lin;Mei, Li;Lu, Ruiqi;Li, Yuan;Li, Hanshi;Li, Yu
    • The korean journal of orthodontics
    • /
    • v.52 no.4
    • /
    • pp.268-277
    • /
    • 2022
  • Objective: Poor experience with Invisalign treatment affects patient compliance and, thus, treatment outcome. Knowing the potential discomfort level in advance can help orthodontists better prepare the patient to overcome the difficult stage. This study aimed to construct artificial neural networks (ANNs) to predict patient experience in the early stages of Invisalign treatment. Methods: In total, 196 patients were enrolled. Data collection included questionnaires on pain, anxiety, and quality of life (QoL). A four-layer fully connected multilayer perception with three backpropagations was constructed to predict patient experience of the treatment. The input data comprised 17 clinical features. The partial derivative method was used to calculate the relative contributions of each input in the ANNs. Results: The predictive success rates for pain, anxiety, and QoL were 87.7%, 93.4%, and 92.4%, respectively. ANNs for predicting pain, anxiety, and QoL yielded areas under the curve of 0.963, 0.992, and 0.982, respectively. The number of teeth with lingual attachments was the most important factor affecting the outcome of negative experience, followed by the number of lingual buttons and upper incisors with attachments. Conclusions: The constructed ANNs in this preliminary study show good accuracy in predicting patient experience (i.e., pain, anxiety, and QoL) of Invisalign treatment. Artificial intelligence system developed for predicting patient comfort has potential for clinical application to enhance patient compliance.

Towards an Artificial Immune System for Network Intrusion Detection: An Investigation of Dynamic Clonal Selection (네트워크 침입탐지를 위한 인공면역 시스템의 동적 클론선택 연구)

  • 김정원;최종욱;김상진
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04a
    • /
    • pp.847-849
    • /
    • 2002
  • 인공면역시스템에서 중요한 특징중의 하나는 지속적으로 변화하는 환경에서 자기(self)의 유동적인 패턴을 동적으로 학습하고 비자기(non-self)에 대한 새로운 패턴을 예측하는데 있다. 본 논문은 자기적 용(self-adaptation)의 인공면역체계 특성을 기반으로하여 설계된 dynamics(동적 클론선택 알고리즘, dynamic clonal selection algorithm)의 역할을 논한다. 시스템의 세가지 중요한 변수인 자기내성 기간(Tolerisation Period). 연역 반응 임계값(activation threshold). 수명(life span)에 따라 변화하는 dynamics의 성능을 네트워크 침입에서 흔히 발견되는 시나리오를 모의실험하여 평가한다

  • PDF

Linear Programming Model Discovery from Databases Using GPS and Artificial Neural Networks (GPS와 인공신경망을 활용한 데이터베이스로부터의 선형계획모형 발견법)

  • 권오병;양진설
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.25 no.3
    • /
    • pp.91-107
    • /
    • 2000
  • The linear programming model is a special form of useful knowledge that is embedded in a database. Since formulating models from scratch requires knowledge-intensive efforts, knowledge-based formulation support systems have been proposed in the Decision Support Systems area. However, they rely on the assumption that sufficient domain knowledge should already be captured as a specific knowledge representation form. Hence, the purpose of this paper is to propose a methodology that finds useful knowledge on building linear programming models from a database. The methodology consists of two parts. The first part is to find s first-cut model based on a data dictionary. To do so, we applied the General Problem Solver(GPS) algorithm. The second part is to discover a second-cut model by applying neural network technique. An illustrative example is described to show the feasibility of the proposed methodology.

  • PDF

An efficient heuristics for determining the optimal number of cluster using clustering balance (클러스터링 균형을 사용하여 최적의 클러스터 개수를 결정하기 위한 효율적인 휴리스틱)

  • Lee, Sangwook
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.792-796
    • /
    • 2009
  • Determining the optimal number of cluster is an important issue in research area of data clustering. It is choosing the cluster validity method and finding the cluster number where it optimizes the cluster validity. In this paper, an efficient heuristic for determining optimal number of cluster using clustering balance is proposed. The experimental results using k-means at artificial and real-life data set show that proposed algorithm is excellent in aspect of time efficiency.

  • PDF

Dynamic Selection of Neural Network Modules based on Cellular Automata for Complex Behaviors (복잡한 행동을 위한 셀룰라 오토마타 기반 신경망 모듈의 동적선택)

  • Kim, Kyung-Joong;Cho, Sung-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.4
    • /
    • pp.160-166
    • /
    • 2002
  • Since conventional mobile robot control with one module has limitation to solve complex problems, there have been a variety of works on combining multiple modules for solving them. Recently, many researchers attempt to develop mobile robot controllers using artificial life techniques. In this paper, we develop a mobile robot controller using cellular automata based neural networks, where complex tasks are divided to simple sub-tasks and optimal neural structure of each sub-task is explored by genetic algorithm. Neural network modules are combined dynamically using the action selection mechanism, where basic behavior modules compete each other by inhibition and cooperation. Khepera mobile robot simulator is used to verify the proposed model. Experimental results show that complex behaviors emerge from the combination of low-level behavior modules.

Finding an Archetypal Landscape of Yongdam Village Conformity with Traditional Region Theories (전통지역이론(傳統地域理論)에 준거(準據)한 용담면(用潭面)의 주거경관상(住居景觀相))

  • Huh, Joon;Rho, Jae Hyun
    • Journal of Korean Society of Rural Planning
    • /
    • v.5 no.1 s.9
    • /
    • pp.87-94
    • /
    • 1999
  • The purpose of this study is to find through the algorithm of traditional region theory how nature has been recognized and occupied and harmoniously used by human beings. As seen Korean traditional villages, the natural elements such as mountains and streams in Yongdam are more remarkable than the artificial elements. The people in the village regards a radius of 4-12 km as their territory and an ideal space harmonized with natural landscape. The landscape structure of Yongdam shows traditional fengshui form and has a all the characteristics that Korean rural villages have. The landscape elements, such as mountains, rivers, plains, trees, soil color, etc. characterize Yongdam village and make the landscape of Yongdam a unique place. Traditional region theory is to study an emotional reaction to the quality of life, and landscape of a settlement. And it should be a basic theory to understand the whole landscape.

  • PDF

An Improved Reinforcement Learning Technique for Mission Completion (임무수행을 위한 개선된 강화학습 방법)

  • 권우영;이상훈;서일홍
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.9
    • /
    • pp.533-539
    • /
    • 2003
  • Reinforcement learning (RL) has been widely used as a learning mechanism of an artificial life system. However, RL usually suffers from slow convergence to the optimum state-action sequence or a sequence of stimulus-response (SR) behaviors, and may not correctly work in non-Markov processes. In this paper, first, to cope with slow-convergence problem, if some state-action pairs are considered as disturbance for optimum sequence, then they no to be eliminated in long-term memory (LTM), where such disturbances are found by a shortest path-finding algorithm. This process is shown to let the system get an enhanced learning speed. Second, to partly solve a non-Markov problem, if a stimulus is frequently met in a searching-process, then the stimulus will be classified as a sequential percept for a non-Markov hidden state. And thus, a correct behavior for a non-Markov hidden state can be learned as in a Markov environment. To show the validity of our proposed learning technologies, several simulation result j will be illustrated.

Autonomous Animated Robots

  • Yamamoto, Masahito;Iwadate, Kenji;Ooe, Ryosuke;Suzuki, Ikuo;Furukawa, Masashi
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.85-91
    • /
    • 2010
  • In this paper, we demonstrate an autonomous design of motion control of virtual creatures (called animated robots in this paper) and develop modeling software for animated robots. An animated robot can behave autonomously by using its own sensors and controllers on three-dimensional physically modeled environment. The developed software can enable us to execute the simulation of animated robots on physical environment at any time during the modeling process. In order to simulate more realistic world, an approximate fluid environment model with low computational costs is presented. It is shown that a combinatorial use of neural network implementation for controllers and the genetic algorithm (GA) or the particle swarm optimization (PSO) is effective for emerging more realistic autonomous behaviours of animated robots.

Evaluation of Subtractive Clustering based Adaptive Neuro-Fuzzy Inference System with Fuzzy C-Means based ANFIS System in Diagnosis of Alzheimer

  • Kour, Haneet;Manhas, Jatinder;Sharma, Vinod
    • Journal of Multimedia Information System
    • /
    • v.6 no.2
    • /
    • pp.87-90
    • /
    • 2019
  • Machine learning techniques have been applied in almost all the domains of human life to aid and enhance the problem solving capabilities of the system. The field of medical science has improved to a greater extent with the advent and application of these techniques. Efficient expert systems using various soft computing techniques like artificial neural network, Fuzzy Logic, Genetic algorithm, Hybrid system, etc. are being developed to equip medical practitioner with better and effective diagnosing capabilities. In this paper, a comparative study to evaluate the predictive performance of subtractive clustering based ANFIS hybrid system (SCANFIS) with Fuzzy C-Means (FCM) based ANFIS system (FCMANFIS) for Alzheimer disease (AD) has been taken. To evaluate the performance of these two systems, three parameters i.e. root mean square error (RMSE), prediction accuracy and precision are implemented. Experimental results demonstrated that the FCMANFIS model produce better results when compared to SCANFIS model in predictive analysis of Alzheimer disease (AD).

A Hybrid Routing Protocol Based on Bio-Inspired Methods in a Mobile Ad Hoc Network

  • Alattas, Khalid A
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.207-213
    • /
    • 2021
  • Networks in Mobile ad hoc contain distribution and do not have a predefined structure which practically means that network modes can play the role of being clients or servers. The routing protocols used in mobile Ad-hoc networks (MANETs) are characterized by limited bandwidth, mobility, limited power supply, and routing protocols. Hybrid routing protocols solve the delay problem of reactive routing protocols and the routing overhead of proactive routing protocols. The Ant Colony Optimization (ACO) algorithm is used to solve other real-life problems such as the travelling salesman problem, capacity planning, and the vehicle routing challenge. Bio-inspired methods have probed lethal in helping to solve the problem domains in these networks. Hybrid routing protocols combine the distance vector routing protocol (DVRP) and the link-state routing protocol (LSRP) to solve the routing problem.