• 제목/요약/키워드: Artificial Intelligent Model

Search Result 391, Processing Time 0.025 seconds

A Study on the Dataset Construction and Model Application for Detecting Surgical Gauze in C-Arm Imaging Using Artificial Intelligence (인공지능을 활용한 C-Arm에서 수술용 거즈 검출을 위한 데이터셋 구축 및 검출모델 적용에 관한 연구)

  • Kim, Jin Yeop;Hwang, Ho Seong;Lee, Joo Byung;Choi, Yong Jin;Lee, Kang Seok;Kim, Ho Chul
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.290-297
    • /
    • 2022
  • During surgery, Surgical instruments are often left behind due to accidents. Most of these are surgical gauze, so radioactive non-permeable gauze (X-ray gauze) is used for preventing of accidents which gauze is left in the body. This gauze is divided into wire and pad type. If it is confirmed that the gauze remains in the body, gauze must be detected by radiologist's reading by imaging using a mobile X-ray device. But most of operating rooms are not equipped with a mobile X-ray device, but equipped C-Arm equipment, which is of poorer quality than mobile X-ray equipment and furthermore it takes time to read them. In this study, Use C-Arm equipment to acquire gauze image for detection and Build dataset using artificial intelligence and select a detection model to Assist with the relatively low image quality and the reading of radiology specialists. mAP@50 and detection time are used as indicators for performance evaluation. The result is that two-class gauze detection dataset is more accurate and YOLOv5 model mAP@50 is 93.4% and detection time is 11.7 ms.

A Study on Image Labeling Technique for Deep-Learning-Based Multinational Tanks Detection Model

  • Kim, Taehoon;Lim, Dongkyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.58-63
    • /
    • 2022
  • Recently, the improvement of computational processing ability due to the rapid development of computing technology has greatly advanced the field of artificial intelligence, and research to apply it in various domains is active. In particular, in the national defense field, attention is paid to intelligent recognition among machine learning techniques, and efforts are being made to develop object identification and monitoring systems using artificial intelligence. To this end, various image processing technologies and object identification algorithms are applied to create a model that can identify friendly and enemy weapon systems and personnel in real-time. In this paper, we conducted image processing and object identification focused on tanks among various weapon systems. We initially conducted processing the tanks' image using a convolutional neural network, a deep learning technique. The feature map was examined and the important characteristics of the tanks crucial for learning were derived. Then, using YOLOv5 Network, a CNN-based object detection network, a model trained by labeling the entire tank and a model trained by labeling only the turret of the tank were created and the results were compared. The model and labeling technique we proposed in this paper can more accurately identify the type of tank and contribute to the intelligent recognition system to be developed in the future.

A Study on the Organizational Development for Intelligent Technology Acceptance in ESG Management (ESG 경영을 위한 지능형 기술을 수용하는 조직개발 연구)

  • Jung Byoungho;Joo Hyungkun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.1
    • /
    • pp.77-89
    • /
    • 2023
  • The purpose of this study is to empirically confirm what is an important variable of organizational change by intelligent technology acceptance and whether is a difference in important variables in the organization level of acceptance of intelligent technology. Recently, business models using intelligent technologies such as chat-bots, self-driving cars, credit-prevention fraud, face recognition, and health-care are emerging. External situation factors such as artificial intelligence, big data, COVID-19, and the ESG management are changing the direction of a company's management strategy. This research method established a structural equation model. As a result of the analysis, we found that the leadership, organizational culture, and organizational cooperation variables had a positive effect on human resource development variables. Human resource development found a positive effect on the performance of intelligent technology. In addition, we found the independent variables of leadership, organizational culture, and organizational cooperation had partial mediating effects on the performance of intelligent technology. Each group of levels of intelligent technology found performance differences. The organizational culture variables appeared as important variables in all groups. On the other hand, the leadership variable appeared as an important variable in the middle and lower groups of intelligent technology. The theoretical background of this study is that the business theory was updated through artificial intelligence and intelligent technology theory. As a practical implication, the organization adopting intelligent technology is necessary to prepare a systematic plan for organizational culture change.

Development of intelligent agent system for automated ship CAE modelling by non-deterministic optimized methods (비 결정론적 최적화 기법을 이용한 선박의 CAE 모델링 자동화를 위한 지능형 에이전트 시스템의 개발)

  • Bae, Dong-Myung;Kim, Hag-Soo;Shin, Chang-Hyuk;Wang, Qing
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.1
    • /
    • pp.57-67
    • /
    • 2008
  • Recently, Korean shipbuilding industry is keeping up the position of world wide No. 1 in world shipbuilding market share. It is caused by endless efforts to develope new technologies and methods and fast development of IT technologies in Korea, to raise up its productivities and efficiency in shipbuilding industry with many kinds of optimizing methods including genetic algorithm or artificial life algorithm... etc. In this paper, we have suggested the artificial life algorithm with relay search micro genetic algorithm. and we have improved a defect of simple genetic algorithm for its slow convergence speed and added a variety of solution candidates with applying relay search simple genetic algorithm. Finally, we have developed intelligent agent system for ship CAE modeling. We have tried to offer some conveniences a ship engineer for repeated ship CAE modeling by changing ship design repeatedly and to increase its accuracy of a ship model with it.

Neural Network and Cloud Computing for Predicting ECG Waves from PPG Readings

  • Kosasih, David Ishak;Lee, Byung-Gook;Lim, Hyotaek
    • Journal of Multimedia Information System
    • /
    • v.9 no.1
    • /
    • pp.11-20
    • /
    • 2022
  • In this paper, we have recently created self-driving cars and self-parking systems in human-friendly cars that can provide high safety and high convenience functions by recognizing the internal and external situations of automobiles in real time by incorporating next-generation electronics, information communication, and function control technologies. And with the development of connected cars, the ITS (Intelligent Transportation Systems) market is expected to grow rapidly. Intelligent Transportation System (ITS) is an intelligent transportation system that incorporates technologies such as electronics, information, communication, and control into the transportation system, and aims to implement a next-generation transportation system suitable for the information society. By combining the technologies of connected cars and Internet of Things with software features and operating systems, future cars will serve as a service platform to connect the surrounding infrastructure on their own. This study creates a research methodology based on the Enhanced Security Model in Self-Driving Cars model. As for the types of attacks, Availability Attack, Man in the Middle Attack, Imperial Password Use, and Use Inclusive Access Control attack defense methodology are used. Along with the commercialization of 5G, various service models using advanced technologies such as autonomous vehicles, traffic information sharing systems using IoT, and AI-based mobility services are also appearing, and the growth of smart transportation is accelerating. Therefore, research was conducted to defend against hacking based on vulnerabilities of smart cars based on artificial intelligence blockchain.

Design of Intelligent Information Processing Layer based on Brain (뇌 정보처리 원리 기반 지능형 정보처리 레이어 설계)

  • Kim Seong-Joo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.45-48
    • /
    • 2006
  • The system that can generate biological brain information processing mechanism more precisely may have several abilities such as exact cognition, situation decision, learning and inference, and output decision. In this paper, to implement high level information processing and thinking ability in a complex system, the information processing layer based on the biological brain is introduced. The biological brain information processing mechanism, which is analyzed in this paper, provides fundamental information about intelligent engineering system, and the design of the layer that can mimic the functions of a brain through engineering definitions can efficiently introduce an intelligent information processing method having a consistent flow in various engineering systems. The applications proposed in this paper are expected to take several roles as a unified model that generates information process in various areas, such as engineering and medical field, with a dream of implementing humanoid artificial intelligent system.

  • PDF

A Development of Artificial Immune Model for Network Intrusion Detection (네트워크 침입 탐지를 위한 인공 면역 모델의 개발)

  • ;Peter Brently
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.373-379
    • /
    • 1999
  • This pqer investigates the subject of intrusion detection over networks. Existing network-based IDS's are categorised into three groups and the overall architecture of each group is summarised and assessed. A new methodology to this problem is then presented, which is inspired by the human immune system and based on a novel artificial immune model. The architecture of the model is presented and its characteristics are compared with the requirements of network-based IDS's. The paper concludes that this new approach shows considerable promise for future network-based IDS's.

  • PDF

Classification and Prediction Of A Health Status Of HIV/AIDS Patients: Artificial Neural Network Model

  • Lee, Chang W.;N.K. Kwak
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.473-477
    • /
    • 2001
  • Artificial neural network (ANN) is known to identify relationships even when some of the input data are very complex, ill-defined and ill-structured. One of the advantages in ANN is that it can discriminate the linearly inseparable data. This study presents an application of ANN to classify and predict the symptomatic status of HIV/AIDS patients. Even though ANN techniques have been applied to a variety of areas, this study has a substantial contribution to the HIV/AIDS care and prevention planning area. ANN model in classifying both the HIV and AIDS status of HIV/AIDS patients is developed and analyzed. The diagnostic accuracy of the ANN in classifying both the HIV status and AIDS status of HIV/AIDS status is evaluated. Several different ANN topologies are applied to AIDS Cost and Services Utilization Survey (ACSUS) datasets in order to demonstrate the model\`s capability. If ANN design models are different, it would be interesting to see what influence would have on classification of HIV/AIDS-related persons.

  • PDF

Development of a Model to Predict the Volatility of Housing Prices Using Artificial Intelligence

  • Jeonghyun LEE;Sangwon LEE
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.75-87
    • /
    • 2023
  • We designed to employ an Artificial Intelligence learning model to predict real estate prices and determine the reasons behind their changes, with the goal of using the results as a guide for policy. Numerous studies have already been conducted in an effort to develop a real estate price prediction model. The price prediction power of conventional time series analysis techniques (such as the widely-used ARIMA and VAR models for univariate time series analysis) and the more recently-discussed LSTM techniques is compared and analyzed in this study in order to forecast real estate prices. There is currently a period of rising volatility in the real estate market as a result of both internal and external factors. Predicting the movement of real estate values during times of heightened volatility is more challenging than it is during times of persistent general trends. According to the real estate market cycle, this study focuses on the three times of extreme volatility. It was established that the LSTM, VAR, and ARIMA models have strong predictive capacity by successfully forecasting the trading price index during a period of unusually high volatility. We explores potential synergies between the hybrid artificial intelligence learning model and the conventional statistical prediction model.

Evolving Cellular Automata Neural Systems(ECANS 1)

  • Lee, Dong-Wook;Sim, Kwee-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.158-163
    • /
    • 1998
  • This paper is our first attempt to construct a information processing system such as the living creatures' brain based on artificial life technique. In this paper, we propose a method of constructing neural networks using bio-inspired emergent and evolutionary concept, Ontogeny of living things is realized by cellular automata model and Phylogeny that is living things adaptation ability themselves to given environment, are realized by evolutionary algorithms. Proposing evolving cellular automata neural systems are calledin a word ECANS. A basic component of ECANS is 'cell' which is modeled on chaotic neuron with complex characteristics, In our system, the states of cell are classified into eight by method of connection neighborhood cells. When a problem is given, ECANS adapt itself to the problem by evolutionary method. For fixed cells transition rule, the structure of neural network is adapted by change of initial cell' arrangement. This initial cell is to become a network b developmental process. The effectiveness and the capability of proposed scheme are verified by applying it to pattern classification and robot control problem.

  • PDF