• 제목/요약/키워드: Artificial Intelligence in Education

검색결과 710건 처리시간 0.027초

머신러닝을 이용한 정부통계지표가 소매업 매출액에 미치는 예측 변인 탐색: 약국을 중심으로 (Exploring the Predictive Variables of Government Statistical Indicators on Retail sales Using Machine Learning: Focusing on Pharmacy)

  • 이광수
    • 인터넷정보학회논문지
    • /
    • 제23권3호
    • /
    • pp.125-135
    • /
    • 2022
  • 본 연구는 데이터, 네트워크, 인공지능을 기반으로 산업 생태계 조성을 위해 구축된 정부통계지표가 약국 매출액에 영향을 미치는지 머신러닝을 이용하여 변인을 탐색하고 약국 매출액 예측에 적합한 분석 기법을 제공하고자 한다. 이에, 본 연구는 28개 정부통계지표와 소매업종인 약국을 대상으로 2016년 1월부터 2021년 12월까지의 분석 데이터를 활용하여 머신러닝 기법인 랜덤 포레스트, XGBoost, LightGBM, CatBoost을 통해 예측 변인 및 성능을 탐색하였다. 분석결과 경기관련 지표인 경제심리지수, 경기동행지수순환변동치, 소비자심리지수는 약국 매출액에 영향을 미치는 중요한 변인으로 나타났고, 회귀성능은 지표 MAE, MSE, RMSE를 살펴본 결과 랜덤 포레스트가 XGBoost, LightGBM, CatBoost 보다 성능이 가장 우수하게 나타났다. 이에, 본 연구는 머신러닝 결과를 토대로 약국 매출액에 영향을 미치는 변인과 최적의 머신러닝 기법을 제시하였으며, 여러 시사점과 후속연구를 제안하였다.

Research on the Design of a Deep Learning-Based Automatic Web Page Generation System

  • Jung-Hwan Kim;Young-beom Ko;Jihoon Choi;Hanjin Lee
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권2호
    • /
    • pp.21-30
    • /
    • 2024
  • 본 연구는 폭증하는 디지털 비즈니스의 수요 증가를 감당하기 위하여 AI를 활용한 새로운 제작 방법을 모색하는데 목적이 있다. 이에 딥러닝과 빅데이터를 기반으로 실제 웹페이지 생성 가능 시스템을 구축하고자 하였다. 첫째, 이커머스 웹사이트 기능을 바탕으로 분류체계를 수립하였다. 둘째, 웹페이지 구성요소의 유형을 체계적으로 분류하였다. 셋째, 딥러닝이 적용가능한 웹페이지 자동생성시스템 전체를 설계하였다. 실제 데이터를 학습하여 구현된 딥러닝 모델이 기존 웹사이트를 분석하고 자동생성되도록 재설계 함으로써, 산업에서 바로 사용가능한 방안을 제안했다. 나아가 체계가 부족했던 웹사이트 레이아웃 및 특징에 대한 분류체계를 수립했다는 측면에서 의의가 있다. 이는 향후 생성형 AI 기반의 웹사이트 연구 및 산업 분야에 크게 기여할 수 있을 것이다.

SVM과 meta-learning algorithm을 이용한 고지혈증 유병 예측모형 개발과 활용 (Development and application of prediction model of hyperlipidemia using SVM and meta-learning algorithm)

  • 이슬기;신택수
    • 지능정보연구
    • /
    • 제24권2호
    • /
    • pp.111-124
    • /
    • 2018
  • 본 연구는 만성질환 중의 하나인 고지혈증 유병을 예측하는 분류모형을 개발하고자 한다. 이를 위해 SVM과 meta-learning 알고리즘을 이용하여 성과를 비교하였다. 또한 각 알고리즘에서 성과를 향상시키기 위해 변수선정 방법을 통해 유의한 변수만을 선정하여 투입하여 분석하였고 이 결과 역시 각각 성과를 비교하였다. 본 연구목적을 달성하기 위해 한국의료패널 2012년 자료를 이용하였고, 변수 선정을 위해 세 가지 방법을 사용하였다. 먼저 단계적 회귀분석(stepwise regression)을 실시하였다. 둘째, 의사결정나무(decision tree) 알고리즘을 사용하였다. 마지막으로 유전자 알고리즘을 사용하여 변수를 선정하였다. 한편, 이렇게 선정된 변수를 기준으로 SVM, meta-learning 알고리즘 등을 이용하여 고지혈증 환자분류 예측모형을 비교하였고, TP rate, precision 등을 사용하여 분류 성과를 비교분석하였다. 이에 대한 분석결과는 다음과 같다. 첫째, 모든 변수를 투입하여 분류한 결과 SVM의 정확도는 88.4%, 인공신경망의 정확도는 86.7%로 SVM의 정확도가 좀 더 높았다. 둘째, stepwise를 통해 선정된 변수만을 투입하여 분류한 결과 전체 변수를 투입하였을 때보다 각각 정확도가 약간 높았다. 셋째, 의사결정나무에 의해 선정된 변수 3개만을 투입하였을 때 인공신경망의 정확도가 SVM보다 높았다. 유전자 알고리즘을 통해 선정된 변수를 투입하여 분류한 결과 SVM은 88.5%, 인공신경망은 87.9%의 분류 정확도를 보여 주었다. 마지막으로, 본 연구에서 제안하는 meta-learning 알고리즘인 스태킹(stacking)을 적용한 결과로서, SVM과 MLP의 예측결과를 메타 분류기인 SVM의 입력변수로 사용하여 예측한 결과, 고지혈증 분류 정확도가 meta-learning 알고리즘 중에서는 가장 높은 것으로 나타났다.

중학생이 인식하는 학습자-지능형로봇 교사의 관계 형성 요인 (An Exploratory study on Student-Intelligent Robot Teacher relationship recognized by Middle School Students)

  • 이상숙;김진희
    • 디지털융복합연구
    • /
    • 제18권4호
    • /
    • pp.37-44
    • /
    • 2020
  • 본 연구는 중학교 학생이 인식하는 지능형로봇 교사와의 관계형성 요인을 탐색하여 지능형로봇 교사-학습자 간의 관계성을 설명하고자 하였다. 이에, 기존에 개발된 교사-학생 관계 측정 도구를 지능형로봇 교사 맥락에 맞게 재구성하여 283명의 중학교 1학년 학생을 대상으로 설문조사를 진행하였다. 이후, SPSS 23과 Amos 21 프로그램을 활용하여 탐색적 요인분석 및 확인적 요인분석을 실시하였다. 연구결과 중학생이 인식하는 지능형로봇 교사와의 관계형성 요인은 '신뢰감', '유능감', '감정교류', '포용력'이며, 이러한 하위요인들은 중학생이 지능형 로봇과의 관계형성을 설명하는데 근거를 제시하고 있다. 본 연구는 지능형로봇 교사-학습자 간의 유의미한 상호작용 증진을 위한 방안에 대한 논의 뿐 아니라 지능형 로봇을 기반으로 한 교수법을 제시하는 데에도 활용될 수 있을 것이라 판단된다. 또한, 교육용 지능형 로봇 서비스의 이해 및 개발을 지원하는 연구로써 공헌할 것이다. 이상의 연구결과를 바탕으로 추후 연구에서는 지능형 로봇 교사에 대한 다양한 학교 구성원(교사, 학부모 등)의 인식을 조사하여 교육현장에서의 인간-로봇 상호작용 연구가 계속되어야 할 것이다.

대학도서관 인공지능 관련 교육콘텐츠 추천 시스템 사용의도에 관한 연구 - 대학생과 사서의 인식을 중심으로 - (A Study on the Intention to Use of the AI-related Educational Content Recommendation System in the University Library: Focusing on the Perceptions of University Students and Librarians)

  • 김성훈;박시온;박지원;오유진
    • 한국도서관정보학회지
    • /
    • 제53권1호
    • /
    • pp.231-263
    • /
    • 2022
  • 인공지능에 대한 이해 및 업무분야에서의 활용 능력은 지식 정보화 시대를 살아가는 모든 사람에게 기본 역량으로 강조되고 있으며, 이에 따라 인공지능에 대한 교육의 필요성은 대학 구성원들에게도 높게 인식되고 있다. 국내외 대학도서관 역시 효과적인 인공지능 콘텐츠 제공의 필요성을 인식하여 전자 형태의 디지털 콘텐츠를 제공하고 있으나, 인공지능이라는 정보 기술에 특화된 이용자 맞춤형 추천은 제공되고 있지 않고 있으며 이러한 추천서비스에 대한 이용자의 관심 파악 역시 미비하다. 대학생의 인공지능 교육에 대한 수요가 증가하고 있는 상황에서, 대학도서관에서의 인공지능 관련 콘텐츠 추천에 대한 이용자의 이용의사를 파악하고 효과적인 서비스 수립을 위한 조사가 절실히 필요한 시점이다. 본 연구는 확장된 기술수용모델을 활용하여 인공지능 주제 분야에 특화된 디지털 교육 콘텐츠를 추천해주는 서비스에 대한 이용자들의 사용의도에 영향을 주는 요인을 도출하였으며, 대학생을 대상으로 한 온라인 설문조사, 대학도서관 사서들과의 서면인터뷰를 통해 각 요인별 영향력을 조사하고, 성공적 수행을 위한 제언을 수렴하였다. 연구결과, 인공지능관련 교육콘텐츠 추천시스템 사용의도는 성별, 학년, 전공계열에 상관없이 사용의사가 있다고 조사되었고, 과제적합성요인이 사용의도에 가장 영향을 미치는 요인임이 파악되었다. 사서들 또한 서비스의 필요성을 깊이 공감하고 있었고 현실적인 제약사항으로 예산과 콘텐츠 품질 문제를 제시하였다.

GPTs 기반 문제해결 맞춤형 챗봇 제작 및 수학적 성능 분석 (Development and mathematical performance analysis of custom GPTs-Based chatbots)

  • 권미선
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제27권3호
    • /
    • pp.303-320
    • /
    • 2024
  • 본 연구는 폴리아의 문제해결 단계에 따라 풀이를 제공하는 GPTs 기반 맞춤형 챗봇을 제작하여 수학적 성능을 검증하였다. 우선 맞춤형 챗봇 베타 버전을 제작하여 수학적 성능을 검증한 후 대표적인 오류를 수정하여 최종 맞춤형 챗봇을 완성하였다. 완성된 맞춤형 챗봇은 초등 수학 6학년 교과서에 제시된 이미지 형태의 65개 문제 중 평균 약 57.8개를 옳게 해결하여 약 89.0%의 정답률을 보였으며, 베타 버전에 비해 약 4%p 높은 정답률을 나타냈다. 또한 그림이 문제를 해결하는 데 핵심적인 역할을 하지 않는 50개 문제의 경우 평균 45.5개를 옳게 해결하여 약 91.0%의 정답률을 보였다. 완성된 맞춤형 챗봇의 답변 중 대표적인 오류는 문제 인식 오류이며, 문제에 인식하기 어려운 그림이 사용되었거나 문제 구성이 복잡한 경우에 해당 오류가 나타났다. 다음으로 개념 혼동 오류, 문제 이해 오류 등이 나타났다. 본 연구에서 개발한 문제해결 맞춤형 챗봇은 범용적인 챗봇인 ChatGPT보다 우수한 수학적 성능을 보였다. 또한 학년 수준에 적절하도록 풀이 과정의 조정이 가능하여 학생 개별화 맞춤형 지도에 활용할 수 있으며, 누구나 제작이 가능하여 교사 개인별 수업 보조 등 수학교육에서의 다양한 활용 가능성을 엿볼 수 있다.

과학 교과의 학생 평가에서 ChatGPT의 활용 가능성 및 교사 인식 탐색 (Exploration on the Feasibility of Utilization and Teacher Perceptions of Using ChatGPT for Student Assessment in Science )

  • 이동원;심현표;백종호
    • 한국과학교육학회지
    • /
    • 제44권1호
    • /
    • pp.119-130
    • /
    • 2024
  • 본 연구는 과학 교과의 학생 평가에서 생성형 인공지능인 ChatGPT의 활용 가능성을 탐색하는 데 목적이 있다. 이를 위해 평가 문항을 개발하여 학생들로부터 문항에 대한 응답 자료를 수집하였고, 응답 결과를 ChatGPT에 입력하여 평가의 과정을 수행하도록 하였다. 또한 교사들에게 ChatGPT로부터 얻은 평가 결과를 공유하고, 교사들의 평가 과정과 비교하여 학생 평가에서의 ChatGPT의 활용 가능성을 탐색해 보았다. 연구 결과, 채점 기준의 설정 측면에서 ChatGPT가 생성해 내는 채점 기준이 전반적으로 타당성을 갖추고 있는 것으로 볼 수 있었다. 그러나 ChatGPT가 수행한 채점 결과는 교사들 채점한 결과와 비교하였을 때 일관성이 다소 낮았고, 특히 문항에 포함된 평가 요소가 많고, 평가 요소별 배점 기준이 복잡할수록 채점 결과의 일치도가 더 낮게 나타났다. 학생 응답에 대한 피드백 측면에서는 학생 응답의 과학적 타당성을 평가하는 과정에서 일부 잘못된 내용을 제공하거나 교육과정을 넘어서는 수준의 피드백이 생성되는 경우도 있었으나, 문항에 대한 올바른 답안을 알려주고, 추가적인 사례들을 제공하는 등의 긍정적인 부분도 확인할 수 있었다. 이러한 결과들을 바탕으로 교사들로부터 ChatGPT의 활용 가능성에 대한 인식을 살펴 보았을 때, 학생 평가에서 중요하게 인식되는 '신뢰성' 측면에서 부족한 면이 있기는 하지만, 교사들의 평가를 지원하는 측면에서 활용 가능성을 발견할 수도 있었다. 마지막으로, 이러한 연구 결과를 종합하여 학생 평가에서의 ChatGPT의 활용에 대한 시사점을 제언하였다.

최신 농업기계 특허 동향 조사 (Analysis of Patent Trends in Agricultural Machinery)

  • 홍순중;김동억;강동현;김진진;강정균;이경환;모창연;류동기
    • 현장농수산연구지
    • /
    • 제23권2호
    • /
    • pp.99-111
    • /
    • 2021
  • 농경지, 농기계, 농작업자 간 IoT 등의 통신 기술을 이용한 유기적인 정보교환을 통해 생산성, 효율성, 수익성을 높이는 지능형 데이터 농업 형태인 커넥티드 팜이 상용화 단계에 있다. 본 연구는 지능형 농업기계의 교육과정과 농업기계 안전교육 성과지표를 개발하고자 ICT, 로봇, 인공지능 등 첨단 기술을 적용한 농업생산의 무인화 및 고효율화 변화에 따른 농업기계의 특허 동향을 조사 분석하였다. 노지용 자동화 기술과 관련해서 미국, 일본, 유럽, 한국의 특허 건수는 각각 541건, 326건, 128건, 85건으로 미국에서의 특허 활동이 가장 활발한 것으로 나타났고, 일본, 유럽, 한국의 순으로 조사되어 한국에서의 농업 자동화 기술이 선진국에 비해 뒤쳐져있는 것으로 조사되었다. 노지 자동화 기술의 세분기술 분야로 보면, 경로 생성 및 추종 기술, 환경 인식을 통한 작업기 제어 기술, 로봇 농작업 시스템 설계 기술, 작물 및 환경 센싱 기술, 수확량 및 품질 모니터링 기술 분야 순으로 출원 점유율이 높은 것으로 나타났다.

토픽모델링을 이용한 교육정책 키워드 기반 소셜미디어 분석 (Social Media Analysis Based on Keyword Related to Educational Policy Using Topic Modeling)

  • 정진명;박영호;김우주
    • 인터넷정보학회논문지
    • /
    • 제19권4호
    • /
    • pp.53-63
    • /
    • 2018
  • 정보를 전달하고 여론을 형성하는 전통적인 매스미디어의 기능이 ICT 기술의 발전으로 소셜미디어를 통해 정보와 의견을 공유하는 환경으로 급격하게 변해 왔으며, 그 영향력을 더욱 강화시키고 있다. 즉, 일반 대중들이 소셜미디어를 통해 정치 사회 경제 변화에 대한 여론을 생산하고 공유하는 여론의 영향력이 갈수록 커지고 있는 것이 확인되고 있으며, 그 변화는 선거활동과 같은 정치 분야에서 활용되고 있다. 소셜미디어를 활용해서 대중들의 의사를 파악하고, 반영하기 위한 노력은 정치 영역뿐만 아니라 공공 영역에서도 활발하게 이루어지고 있다. 본 논문은 교육분야 정책과정에서 소셜미디어 기반 여론을 활용하기 위한 가능성을 탐색하는 것을 목적으로 한다. 이를 위해 교육정책 중 소프트웨어교육에 관한 키워드를 중심으로 데이터를 수집하고, 문서의 주요 토픽과 토픽별 출현 확률, 토픽 트렌드를 분석하였다. 그 결과 '국내 컴퓨터 교육 시간'토픽이 전체의 43.99%를 차지하였으며, '프라임 사업 선정' 토픽이 36.81%, '인공지능 프로그램'토픽이 7.94%의 출현 확률을 나타내어, 대중의 소프트웨어교육 정책에 대한 주요 관심도를 파악할 수 있었다. 또한, 시기별 토픽 추세 및 연관성 있는 토픽간의 트렌드 비교 분석을 통하여 동일한 주제의 정책이라도 교육과정의 시기와 정책의 대상에 따라 유연한 정책수립이 필요하다는 시사점을 도출할 수 있었다.

AI 생성예술과 게임화 요소가 통합된 미술 교육 모델 개발 : 창의적 사고 향상 (Integrating AI Generative Art and Gamification in an Art Education Model to Enhance Creative Thinking)

  • 이준;김유진
    • 문화기술의 융합
    • /
    • 제9권3호
    • /
    • pp.425-433
    • /
    • 2023
  • 본 연구에서는 미술 전공 신입생들의 창의적 사고를 촉진하기 위해 게이미피케이션 개념과 AI 생성 예술 프로그램을 활용한 가상 예술가 놀이 수업 모델을 개발하였다. 중국 쓰촨영화&텔레비전대학교 디지털미디어아트과 1학년 신입생들을 대상으로 한 이 수업은 미술 창작에 대한 두려움 해소와 문제해결 능력을 향상시키는 것이 목표이다. 이교육 모델은 페르소나 설정, 창의적 글쓰기, 텍스트 시각화, 가상 전시 등 4단계로 구성되어 있다. 페르소나 설정을 통해 학생들은 예술가 정체성을 확립하였고, 게임적 요소를 도입한 글쓰기 체험으로 잠재적인 창의성을 발견할 수 있었다. AI 생성예술 프로그램을 이용한 텍스트 시각화를 통해 창작에 대한 자신감을 얻었고, 가상 전시에서 다른 학생들의 작품 감상 및 평가를 통해 예술가로서의 자존감을 높일 수 있었다. 게이미피케이션과 AI 생성예술 프로그램의 융합을 통한 이 교육모델은 창의적 사고와 문제해결 능력을 촉진하는 새로운 교육 방법이다. 또한 학습자들의 참여와 흥미를 높이는 효과가 있다. 이러한 연구 결과를 바탕으로 미래의 교육 환경에 적합한 창의적 사고를 기르는 교육 전략을 개발하고 적용함으로써, 더 많은 학생들이 예술적 역량과 창의력을 키울 수 있을 것으로 기대된다. 우리는 이러한 교육 전략을 통해 미술 전공 학생뿐만 아니라 다양한 분야의 학생들에게도 적용함으로써 예술적 역량과 창의성을 증진시킬 수 있을 것으로 기대한다.