• Title/Summary/Keyword: Artificial Intelligence Music

Search Result 48, Processing Time 0.023 seconds

A Study on the production of Music Content Using Artificial Intelligence Composition Program (인공지능 작곡 프로그램을 활용한 음악 콘텐츠 제작 연구)

  • Park, Dahae
    • Trans-
    • /
    • v.13
    • /
    • pp.35-58
    • /
    • 2022
  • This study predicts the paradigm shift that the development of artificial intelligence technology will bring to the production of music content, and suggests that works created through collaboration between artificial intelligence and humans can have artistic value as finished products. Anyone can easily produce music content using artificial intelligence composition programs, and it has become an opportunity to inspire artists with various attempts and creative ideas. Although artificial intelligence technology provides convenience in human life and benefits a lot in the efficient aspect of work, it is difficult to escape the perception of data-based pattern music in the art field so far. Pattern music with many quantitative elements is not recognized as a complete creation due to the absence of abstract symbolism or meaning pursued by art. However, it predicts that if qualitative elements such as emotions and creativity are given to artificial intelligence music through human collaboration, it can be recognized as a complete work of art. The development of artificial intelligence technology increases access to culture and art from the public, and it can be expected that anyone can enjoy it as well as aesthetic experiences. In addition, various contents can be produced by improving individual digital literacy, and it is an opportunity to share and communicate with others. As such, artificial intelligence technology serves as a medium connecting the public with culture and art, and is narrowing the gap between humans and technology through art activities. Along with this cultural phenomenon, we predict the possibility of research on the production of artificial intelligence music contents with artistic value and the development of various convergence and complex art contents using artificial intelligence technology in the future.

Artificial Intelligence Applications to Music Composition (인공지능 기반 작곡 프로그램 현황 및 제언)

  • Lee, Sunghoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.4
    • /
    • pp.261-266
    • /
    • 2018
  • This study aimed to provide an overview of artificial intelligence based music composition programs. The artificial intelligence-based composition program has shown remarkable growth as the development of deep neural network theory and the improvement of big data processing technology. Accordingly, artificial intelligence based composition programs for composing classical music and pop music have been proposed variously in academia and industry. But there are several limitations: devaluation in general populations, missing valuable materials, lack of relevant laws, technology-led industries exclusive to the arts, and so on. When effective measures are taken against these limitations, artificial intelligence based technology will play a significant role in fostering national competitiveness.

Algorithmic music composition (알고리즘에 의한 음악의 작곡)

  • 윤중선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.652-655
    • /
    • 1997
  • An exploration for an intelligence paradigm has been delineated. Artificial intelligence and artificial life paradigms seem to fail to show the whole picture of human intelligence. We may understand the human intelligence better by adding the emotional part of human intelligence to the intellectual part of human intelligence. Emotional intelligence is investigated in terms of composing machine as a modern abstract art. Various algorithmic composition and performance concepts are currently being investigated and implemented. Intelligent mapping algorithms restructure the traditional predetermined composition algorithms. Music based on fractals and neural networks is being composed. Also, emotional intelligence and aesthetic aspects of Korean traditional music are investigated in terms of fractal relationship. As a result, this exploration will greatly broaden the potentials of the intelligence research. The exploration of art in the view of intelligence, information and structure will restore the balanced sense, of art and science which seeks happiness in life. The investigations of emotional intelligence will establish the foundations of intelligence, information and control technologies.

  • PDF

Evolution and Historical Review of Music in Mass Media

  • Kang-iL Um;Jiyoung Jung
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.3
    • /
    • pp.370-379
    • /
    • 2024
  • In this paper, we explore the historical development and revolutionary impact of music in mass media across various forms, including radio, television, film, and digital platforms. The evolution of music in mass media reflects significant technological and cultural shifts over the past century. From the early days of radio to the advent of digital streaming, music has played a crucial role in shaping the types of mass media. Early radio broadcasts in the 1920s relied on live performances and recordings to captivate audiences, establishing music as a central element of media content. The rise of television in the 1950s brought new opportunities for music integration, with theme songs, variety shows, and music videos becoming staples of TV programming. The film industry further revolutionized the use of music, with iconic scores enhancing cinematic storytelling and emotional depth. The digital revolution of the late 20th century introduced new formats and services, expanding access to music and transforming consumption patterns. Recently, streaming platforms and social media allow for personalized music experiences and direct artist-fan interactions. Through an analysis of technological advancements, this study highlights the integral role of music in enhancing narrative, evoking emotions, and creating cultural identities. We present our understanding of this evolution to provide insights into future trends and potential innovations in the integration of music with mass media, including the use of artificial intelligence and virtual reality to create immersive auditory experiences.

Opera Clustering: K-means on librettos datasets

  • Jeong, Harim;Yoo, Joo Hun
    • Journal of Internet Computing and Services
    • /
    • v.23 no.2
    • /
    • pp.45-52
    • /
    • 2022
  • With the development of artificial intelligence analysis methods, especially machine learning, various fields are widely expanding their application ranges. However, in the case of classical music, there still remain some difficulties in applying machine learning techniques. Genre classification or music recommendation systems generated by deep learning algorithms are actively used in general music, but not in classical music. In this paper, we attempted to classify opera among classical music. To this end, an experiment was conducted to determine which criteria are most suitable among, composer, period of composition, and emotional atmosphere, which are the basic features of music. To generate emotional labels, we adopted zero-shot classification with four basic emotions, 'happiness', 'sadness', 'anger', and 'fear.' After embedding the opera libretto with the doc2vec processing model, the optimal number of clusters is computed based on the result of the elbow method. Decided four centroids are then adopted in k-means clustering to classify unsupervised libretto datasets. We were able to get optimized clustering based on the result of adjusted rand index scores. With these results, we compared them with notated variables of music. As a result, it was confirmed that the four clusterings calculated by machine after training were most similar to the grouping result by period. Additionally, we were able to verify that the emotional similarity between composer and period did not appear significantly. At the end of the study, by knowing the period is the right criteria, we hope that it makes easier for music listeners to find music that suits their tastes.

Usability Analysis and Improvement Plan for Intelligent Speakers in the 4th Industrial Revolution Environment

  • Seong-Hoon Lee;Dong-Woo Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.119-125
    • /
    • 2023
  • Smart home in the 4th industrial revolution environment is where all devices in the home are connected to each other to provide the optimal living environment desired by the user. Artificial intelligence speakers are being used as a way to manage and control all devices used in this environment. The function of an artificial intelligence speaker ranges from simple music playback to serving as an interface that controls and manages all devices in a smart home space. In this study, we investigated and analyzed the usability of artificial intelligence speakers based on the current status of domestic and overseas markets and the survey contents of two organizations (Korea Consumer Agency and Korea Information and Communication Policy Institute (KISDI)). In addition, we investigated and analyzed the usability of artificial intelligence speakers. Based on the results of responses from users from two related organizations, major problems were derived, and major improvement measures, such as discovering new functions and improving voice recognition performance, were also described.

A Study on the Performance Improvement of MLP Model for Kodály Hand Sign Scale Recognition

  • Na Gyeom YANG;Dong Kun CHUNG
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.3
    • /
    • pp.33-39
    • /
    • 2024
  • In this paper, we explore the application of Kodaly hand signs in enhancing children's music education, performances, and auditory assistance technologies. This research focuses on improving the recognition rate of Multilayer Perceptron (MLP) models in identifying Kodaly hand sign scales through the integration of Artificial Neural Networks (ANN). We developed an enhanced MLP model by augmenting it with additional parameters and optimizing the number of hidden layers, aiming to substantially increase the model's accuracy and efficiency. The augmented model demonstrated a significant improvement in recognizing complex hand sign sequences, achieving a higher accuracy compared to previous methods. These advancements suggest that our approach can greatly benefit music education and the development of auditory assistance technologies by providing more reliable and precise recognition of Kodaly hand signs. This study confirms the potential of parameter augmentation and hidden layers optimization in refining the capabilities of neural network models for practical applications.

Humming: Image Based Automatic Music Composition Using DeepJ Architecture (허밍: DeepJ 구조를 이용한 이미지 기반 자동 작곡 기법 연구)

  • Kim, Taehun;Jung, Keechul;Lee, Insung
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.5
    • /
    • pp.748-756
    • /
    • 2022
  • Thanks to the competition of AlphaGo and Sedol Lee, machine learning has received world-wide attention and huge investments. The performance improvement of computing devices greatly contributed to big data processing and the development of neural networks. Artificial intelligence not only imitates human beings in many fields, but also seems to be better than human capabilities. Although humans' creation is still considered to be better and higher, several artificial intelligences continue to challenge human creativity. The quality of some creative outcomes by AI is as good as the real ones produced by human beings. Sometimes they are not distinguishable, because the neural network has the competence to learn the common features contained in big data and copy them. In order to confirm whether artificial intelligence can express the inherent characteristics of different arts, this paper proposes a new neural network model called Humming. It is an experimental model that combines vgg16, which extracts image features, and DeepJ's architecture, which excels in creating various genres of music. A dataset produced by our experiment shows meaningful and valid results. Different results, however, are produced when the amount of data is increased. The neural network produced a similar pattern of music even though it was a different classification of images, which was not what we were aiming for. However, these new attempts may have explicit significance as a starting point for feature transfer that will be further studied.

A Study on the User Acceptance Model of Artificial Intelligence Music Based on UTAUT

  • Zhang, Weiwei
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.6
    • /
    • pp.25-33
    • /
    • 2020
  • In this paper, the purpose is to verify the impact of performance expectations, effort expectations, social impact, individual innovation and perceived value on the intent of use and the behavior of use. Used Unified Theory of Acceptance and Use of Technology (UTAUT) to verify the applicability of this model in China, and established the research model by adding two new variables to UTAUT according to the situation of the Chinese market. To achieve this goal, 345 questionnaires were collected for experienced music creators using artificial intelligence nuggets in China by means of Internet research. The collected data were analyzed through frequency analysis, factor analysis, reliability analysis, and structural equation analysis through SPSS V. 22.0 and AMOS V 22.0. The verification of the hypotheses presented in the research model identified the decisive influence factors on the use of artificial intelligence music acceptance by Chinese users. The study is innovative in that it attempts to verify the applicability of UTAUT in the Chinese context. In the construction of the user acceptance model of AI music, three influencing factors will have an effect on users' intentions, and according to the degree of effect, from largest to smallest, they are respectively Perceived Innovativeness, Performance Expectancy and Effort Expectancy. This paper will also provide some management advices, i.e. improving the utility and usability of AI music, encouraging users with individual innovativeness, developing competitive and attractive pricing policies, increasing publicity, and prioritizing word-of-mouth advertising.

A Study on the Audio Mastering Results of Artificial Intelligence and Human Experts (인공지능과 인간 전문가의 오디오 마스터링 비교 연구)

  • Heo, Dong-Hyuk;Park, Jae-Rock
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.3
    • /
    • pp.41-50
    • /
    • 2021
  • While artificial intelligence is rapidly replacing human jobs, the art field where human creativity is important is considered an exception. There are currently several AI mastering services in the field of mastering music, a profession at the border between art and technology. In general, the quality of AI mastering is considered to be inferior to the work of a human professional mastering engineer. In this paper, acoustic analysis, listening experiments, and expert interviews were conducted to compare AI and human experts. In the acoustic analysis, In the analysis of audio, there was no significant difference between the results of professional mastering engineers and the results of artificial intelligence. In the listening experiment, the non-musicians could not distinguish between the sound quality of the professional mastering engineer's work and the artificial intelligence work. The group of musicians showed a preference for a specific sound source, but the preference for a specific mastering did not appear significantly. In an expert interview, In expert interviews, respondents answered that there was no significant difference in quality between the two mastering services, and the biggest difference was the communication method between the mastering service provider and the user. In addition, as data increases, it is expected that artificial intelligence mastering will achieve rapid quality improvement and further improvement in communication.