• 제목/요약/키워드: Artificial Intelligence Model

검색결과 1,790건 처리시간 0.027초

기계학습을 활용한 상품자산 투자모델에 관한 연구 (A Study on Commodity Asset Investment Model Based on Machine Learning Technique)

  • 송진호;최흥식;김선웅
    • 지능정보연구
    • /
    • 제23권4호
    • /
    • pp.127-146
    • /
    • 2017
  • 상품자산(Commodity Asset)은 주식, 채권과 같은 전통자산의 포트폴리오의 안정성을 높이기 위한 대체투자자산으로 자산배분의 형태로 투자되고 있지만 주식이나 채권 자산에 비해 자산배분에 대한 모델이나 투자전략에 대한 연구가 부족한 실정이다. 최근 발전한 기계학습(Machine Learning) 연구는 증권시장의 투자부분에서 적극적으로 활용되고 있는데, 기존 투자모델의 한계점을 개선하는 좋은 성과를 나타내고 있다. 본 연구는 이러한 기계학습의 한 기법인 SVM(Support Vector Machine)을 이용하여 상품자산에 투자하는 모델을 제안하고자 한다. 기계학습을 활용한 상품자산에 관한 기존 연구는 주로 상품가격의 예측을 목적으로 수행되었고 상품을 투자자산으로 자산배분에 관한 연구는 찾기 힘들었다. SVM을 통한 예측대상은 투자 가능한 대표적인 4개의 상품지수(Commodity Index)인 골드만삭스 상품지수, 다우존스 UBS 상품지수, 톰슨로이터 CRB상품지수, 로저스 인터내셔날 상품지수와 대표적인 상품선물(Commodity Futures)로 구성된 포트폴리오 그리고 개별 상품선물이다. 개별상품은 에너지, 농산물, 금속 상품에서 대표적인 상품인 원유와 천연가스, 옥수수와 밀, 금과 은을 이용하였다. 상품자산은 전반적인 경제활동 영역에 영향을 받기 때문에 거시경제지표를 통하여 투자모델을 설정하였다. 주가지수, 무역지표, 고용지표, 경기선행지표 등 19가지의 경제지표를 이용하여 상품지수와 상품선물의 등락을 예측하여 투자성과를 예측하는 연구를 수행한 결과, 투자모델을 활용하여 상품선물을 리밸런싱(Rebalancing)하는 포트폴리오가 가장 우수한 성과를 나타냈다. 또한, 기존의 대표적인 상품지수에 투자하는 것 보다 상품선물로 구성된 포트폴리오에 투자하는 것이 우수한 성과를 얻었으며 상품선물 중에서도 에너지 섹터의 선물을 제외한 포트폴리오의 성과가 더 향상된 성과를 나타남을 증명하였다. 본 연구에서는 포트폴리오 성과 향상을 위해 기존에 널리 알려진 전통적 주식, 채권, 현금 포트폴리오에 상품자산을 배분하고자 할 때 투자대상은 상품지수에 투자하는 것이 아닌 개별 상품선물을 선정하여 자체적 상품선물 포트폴리오를 구성하고 그 방법으로는 기간마다 강세가 예측되는 개별 선물만을 골라서 포트폴리오를 재구성하는 것이 효과적인 투자모델이라는 것을 제안한다.

인공지능을 활용한 셀럽봇 모델 제시 (Present the Celeb-Bot Model Using Artificial Intelligence)

  • 이대근;나승유
    • 한국전자통신학회논문지
    • /
    • 제13권4호
    • /
    • pp.765-776
    • /
    • 2018
  • 인공지능 기술은 최근 컴퓨팅 기술의 발달과 함께 급성장하고 있는 기술로, 차세대 핵심기술로 꼽히고 있다. 챗봇은 미리 정해놓은 규칙에 따라 사용자 입력에 대해 응답할 수 있도록 만들어진 시스템으로, 상담, 주문 등 단순 반복 업무를 비롯해 사용자 대화 패턴 분석을 통한 서비스 제공까지 점차 그 범위가 확대되며 생활 밀착형 서비스로 자리 잡을 전망이다. 이에 따라 본 연구에서는 인공지능 기술을 활용한 셀럽봇 모델을 제시하고자 한다. 셀럽봇이란, 셀러브리티(Celebrity)의 약자 셀럽(Celeb)과 챗봇(Chatbot)의 합성어로 셀러브리티와 대화할 수 있는 챗봇 서비스를 말한다. 셀럽은 '애착 관계'를 형성할 수 있는 가장 좋은 대상이며, 누구나 접근하기 쉽다는 장점이 있다. 이와 함께 인공지능 기술은 '제품' 이지만 '제품'이 아닌 사람처럼 여기게 할 수 있는 기술이다. 이를 미루어 볼 때 '셀럽'이라는 특성과 인공지능 기술 기반의 챗봇이 결합하였을 때 가장 큰 시너지를 발생시킬 수 있을 것으로 보며 이를 활용한 다양한 파생상품이 발생할 것으로 보며 이에 따라 셀럽봇 모델을 제시한다.

다이나믹 토픽 모델을 활용한 D(Data)·N(Network)·A(A.I) 중심의 연구동향 분석 (Investigation of Research Trends in the D(Data)·N(Network)·A(A.I) Field Using the Dynamic Topic Model)

  • 우창우;이종연
    • 한국융합학회논문지
    • /
    • 제11권9호
    • /
    • pp.21-29
    • /
    • 2020
  • 최근 디지털 사회의 도래로 다양한 데이터가 폭발적으로 증가하고, 그중 문헌 내 주제어를 도출하는 토픽 모델링에 관한 연구가 활발히 진행되고 있다. 본 논문의 연구목표는 토픽 모델링 방법 중 하나인 DTM(Dynamic Topic Model) 모델을 적용해 D.N.A.(Data, Network, A.I) 분야에 대한 연구동향을 탐색하는데 있다. 실험 데이터는 최근 6년간(2015~2020) ICT(Information and Communication Technology) 분야 중 기술대분류가 SW·AI에 해당하는 연구과제 1,519개 사업에 대해 DTM 모델을 적용하였다. 실험결과로, D.N.A. 분야의 기술 키워드 Big data, Cloud, Artificial Intelligence와 확장된 의미의 기술 키워드 Unstructured, Edge Computing, Learning, Recognition 등이 매년 연구에 표출되었으며, 해당 키워드 들이 특정 연구과제에 종속되지 않고 다른 연구과제에서도 포괄적으로 연구되고 있음을 확인하였다. 끝으로 본 논문의 연구결과는 향후 D.N.A. 분야에 대한 정책기획·과제기획 등 연구개발 기획 과정과 기업의 기술 확보전략·마케팅 전략 등 다양한 곳에 활용될 수 있을 것으로 기대한다.

딥러닝을 이용한 직물의 결함 검출에 관한 연구 (A Study on the Defect Detection of Fabrics using Deep Learning)

  • 남은수;최윤성;이충권
    • 스마트미디어저널
    • /
    • 제11권11호
    • /
    • pp.92-98
    • /
    • 2022
  • 섬유산업에서 생산된 직물의 결함을 식별하는 것은 품질관리를 위한 핵심적인 절차이다. 본 연구는 직물의 이미지를 분석하여 결함을 검출하는 모델을 만들고자 하였다. 연구에 사용된 모델은 딥러닝 기반의 VGGNet 과 ResNet이었고, 두 모델의 결함 검출 성능을 비교하여 평가하였다. 정확도는 VGGNet 모델이 0.859, ResNet 모델이 0.893으로 ResNet 모델의 정확도가 더 높은 결과를 보여주었다. 추가적으로 딥러닝 모델이 직물의 이미지 내에서 결함으로 인식한 부분의 위치를 알아보기 위하여 XAI(eXplainable Artificial Intelligence)기법인 Grad-CAM 알고리즘을 사용하여 모델의 관심영역을 도출하였다. 그 결과 딥러닝 모델이 직물의 결함으로 인식한 부분이 육안으로도 실제 결함이 있는 것으로 확인되었다. 본 연구의 결과는 직물의 결함 검출에 있어서 딥러닝 기반의 인공지능을 활용함으로써 섬유의 생산과정에서 발생하는 시간과 비용을 줄일 수 있을 것으로 기대된다.

Object detection and tracking using a high-performance artificial intelligence-based 3D depth camera: towards early detection of African swine fever

  • Ryu, Harry Wooseuk;Tai, Joo Ho
    • Journal of Veterinary Science
    • /
    • 제23권1호
    • /
    • pp.17.1-17.10
    • /
    • 2022
  • Background: Inspection of livestock farms using surveillance cameras is emerging as a means of early detection of transboundary animal disease such as African swine fever (ASF). Object tracking, a developing technology derived from object detection aims to the consistent identification of individual objects in farms. Objectives: This study was conducted as a preliminary investigation for practical application to livestock farms. With the use of a high-performance artificial intelligence (AI)-based 3D depth camera, the aim is to establish a pathway for utilizing AI models to perform advanced object tracking. Methods: Multiple crossovers by two humans will be simulated to investigate the potential of object tracking. Inspection of consistent identification will be the evidence of object tracking after crossing over. Two AI models, a fast model and an accurate model, were tested and compared with regard to their object tracking performance in 3D. Finally, the recording of pig pen was also processed with aforementioned AI model to test the possibility of 3D object detection. Results: Both AI successfully processed and provided a 3D bounding box, identification number, and distance away from camera for each individual human. The accurate detection model had better evidence than the fast detection model on 3D object tracking and showed the potential application onto pigs as a livestock. Conclusions: Preparing a custom dataset to train AI models in an appropriate farm is required for proper 3D object detection to operate object tracking for pigs at an ideal level. This will allow the farm to smoothly transit traditional methods to ASF-preventing precision livestock farming.

화재 탐지 영역의 이미지와 동영상 인식 사이 인공지능 모델 성능 비교 연구 (A Comparative Study on Artificial in Intelligence Model Performance between Image and Video Recognition in the Fire Detection Area)

  • 이정록;이대웅;정서현;정상
    • 한국재난정보학회 논문집
    • /
    • 제19권4호
    • /
    • pp.968-975
    • /
    • 2023
  • 연구목적: 화재 탐지시 불꽃/연기의 오탐지율이 높은 것을 확인하고 오탐지율을 낮추기 위해 화재 상황을 인식하여 분류하는 방법과 데이터셋을 제안하고자 한다. 연구방법: 동영상을 학습데이터로 활용하여 화재 상황의 특징을 추출하여 분류모델에 적용하고, 평가는 한국정보화진흥원(NIA)에서 진행하는 화재 데이터셋을 이용하여 Yolov8, Slowfast의 모델 성능을 비교 및 분석하였다. 연구결과: YOLO는 배경의 영향에 따라 탐지 성능이 민감하게 변화하며, 화재의 규모가 너무 크거나 작을 때에도 화재를 제대로 감지하지 못했다. SlowFast는 동영상의 시간 축을 같이 학습하기 때문에 비정형 객체에 대해 주변이 흐리거나 밝아 형상을 명확하게 유추할 수 없는 상황에서도 우수하게 화재를 탐지하는 것을 확인했다. 결론: 화재 탐지율은 이미지 데이터 방식보다는 동영상 기반의 인공지능 인식(Detection) 모델을 활용했을 때 더 적절했음을 확인했다.

Predicting the buckling load of smart multilayer columns using soft computing tools

  • Shahbazi, Yaser;Delavari, Ehsan;Chenaghlou, Mohammad Reza
    • Smart Structures and Systems
    • /
    • 제13권1호
    • /
    • pp.81-98
    • /
    • 2014
  • This paper presents the elastic buckling of smart lightweight column structures integrated with a pair of surface piezoelectric layers using artificial intelligence. The finite element modeling of Smart lightweight columns is found using $ANSYS^{(R)}$ software. Then, the first buckling load of the structure is calculated using eigenvalue buckling analysis. To determine the accuracy of the present finite element analysis, a compression study is carried out with literature. Later, parametric studies for length variations, width, and thickness of the elastic core and of the piezoelectric outer layers are performed and the associated buckling load data sets for artificial intelligence are gathered. Finally, the application of soft computing-based methods including artificial neural network (ANN), fuzzy inference system (FIS), and adaptive neuro fuzzy inference system (ANFIS) were carried out. A comparative study is then made between the mentioned soft computing methods and the performance of the models is evaluated using statistic measurements. The comparison of the results reveal that, the ANFIS model with Gaussian membership function provides high accuracy on the prediction of the buckling load in smart lightweight columns, providing better predictions compared to other methods. However, the results obtained from the ANN model using the feed-forward algorithm are also accurate and reliable.

지식 결합을 이용한 서로 다른 모델들의 통합 (Integration of Heterogeneous Models with Knowledge Consolidation)

  • 배재권;김진화
    • 경영과학
    • /
    • 제24권2호
    • /
    • pp.177-196
    • /
    • 2007
  • For better predictions and classifications in customer recommendation, this study proposes an integrative model that efficiently combines the currently-in-use statistical and artificial intelligence models. In particular, by integrating the models such as Association Rule, Frequency Matrix, and Rule Induction, this study suggests an integrative prediction model. Integrated models consist of four models: ASFM model which combines Association Rule(A) and Frequency Matrix(B), ASRI model which combines Association Rule(A) and Rule Induction(C), FMRI model which combines Frequency Matrix(B) and Rule Induction(C), and ASFMRI model which combines Association Rule(A), Frequency Matrix(B), and Rule Induction(C). The data set for the tests is collected from a convenience store G, which is the number one in its brand in S. Korea. This data set contains sales information on customer transactions from September 1, 2005 to December 7, 2005. About 1,000 transactions are selected for a specific item. Using this data set. it suggests an integrated model predicting whether a customer buys or not buys a specific product for target marketing strategy. The performance of integrated model is compared with that of other models. The results from the experiments show that the performance of integrated model is superior to that of all other models such as Association Rule, Frequency Matrix, and Rule Induction.

Multi-communication layered HPL model and its application to GPU clusters

  • Kim, Young Woo;Oh, Myeong-Hoon;Park, Chan Yeol
    • ETRI Journal
    • /
    • 제43권3호
    • /
    • pp.524-537
    • /
    • 2021
  • High-performance Linpack (HPL) is among the most popular benchmarks for evaluating the capabilities of computing systems and has been used as a standard to compare the performance of computing systems since the early 1980s. In the initial system-design stage, it is critical to estimate the capabilities of a system quickly and accurately. However, the original HPL mathematical model based on a single core and single communication layer yields varying accuracy for modern processors and accelerators comprising large numbers of cores. To reduce the performance-estimation gap between the HPL model and an actual system, we propose a mathematical model for multi-communication layered HPL. The effectiveness of the proposed model is evaluated by applying it to a GPU cluster and well-known systems. The results reveal performance differences of 1.1% on a single GPU. The GPU cluster and well-known large system show 5.5% and 4.1% differences on average, respectively. Compared to the original HPL model, the proposed multi-communication layered HPL model provides performance estimates within a few seconds and a smaller error range from the processor/accelerator level to the large system level.

Development of YOLOv5s and DeepSORT Mixed Neural Network to Improve Fire Detection Performance

  • Jong-Hyun Lee;Sang-Hyun Lee
    • International Journal of Advanced Culture Technology
    • /
    • 제11권1호
    • /
    • pp.320-324
    • /
    • 2023
  • As urbanization accelerates and facilities that use energy increase, human life and property damage due to fire is increasing. Therefore, a fire monitoring system capable of quickly detecting a fire is required to reduce economic loss and human damage caused by a fire. In this study, we aim to develop an improved artificial intelligence model that can increase the accuracy of low fire alarms by mixing DeepSORT, which has strengths in object tracking, with the YOLOv5s model. In order to develop a fire detection model that is faster and more accurate than the existing artificial intelligence model, DeepSORT, a technology that complements and extends SORT as one of the most widely used frameworks for object tracking and YOLOv5s model, was selected and a mixed model was used and compared with the YOLOv5s model. As the final research result of this paper, the accuracy of YOLOv5s model was 96.3% and the number of frames per second was 30, and the YOLOv5s_DeepSORT mixed model was 0.9% higher in accuracy than YOLOv5s with an accuracy of 97.2% and number of frames per second: 30.