• Title/Summary/Keyword: Artificial Intelligence Marketing

Search Result 94, Processing Time 0.033 seconds

The Dynamic Effects of China's Agricultural Technology Progress and Agricultural Environment Grants on Agricultural Development - Focusing on 3 Dongbei Province in China - (중국의 농업기술진보와 농업환경보조금이 농업발전에 미치는 동태적 파급효과 - 동북 3성을 중심으로 -)

  • Jin, Lin;Mun, Hong Sung
    • Journal of Korean Society of Rural Planning
    • /
    • v.26 no.3
    • /
    • pp.57-65
    • /
    • 2020
  • Agricultural research and development (R&D) investment has contributed not only to agriculture but also to the overall economic growth of the country. The recent arrival of the fourth industrial revolution has raised the need for agricultural R&D as a preparation. Agriculture R&D is directly related to the fourth industrial revolution in the agricultural and livestock sectors that utilize big data, robots, artificial intelligence and cloud. Meanwhile, subsidies or grants are considered the most widely used means of policy. Therefore, in light of the current situation in which Chinese agriculture values R&D investment, this study attempted to analyze the dynamic relationship between variables by establishing a model of agricultural environment subsidy representing the role of government, agricultural technology progress representing existing agricultural R&D investment, agricultural income representing agricultural development and total agricultural output. The analysis results showed that each variable's reaction to the rise in China's agricultural R&D investment has a positive effect on agricultural development, in line with the theory that the investment in science and technology in the agricultural sector has a positive effect. In addition, the response of each variable to China's rising agricultural environment subsidy is shown to have a positive relationship, which can also be said to be in line with the theory that the government's market-friendly intervention is beneficial to economic development.

GAN-based Automated Generation of Web Page Metadata for Search Engine Optimization (검색엔진 최적화를 위한 GAN 기반 웹사이트 메타데이터 자동 생성)

  • An, Sojung;Lee, O-jun;Lee, Jung-Hyeon;Jung, Jason J.;Yong, Hwan-Sung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.79-82
    • /
    • 2019
  • This study aims to design and implement automated SEO tools that has applied the artificial intelligence techniques for search engine optimization (SEO; Search Engine Optimization). Traditional Search Engine Optimization (SEO) on-page optimization show limitations that rely only on knowledge of webpage administrators. Thereby, this paper proposes the metadata generation system. It introduces three approaches for recommending metadata; i) Downloading the metadata which is the top of webpage ii) Generating terms which is high relevance by using bi-directional Long Short Term Memory (LSTM) based on attention; iii) Learning through the Generative Adversarial Network (GAN) to enhance overall performance. It is expected to be useful as an optimizing tool that can be evaluated and improve the online marketing processes.

  • PDF

Prediction of OPS(On-base Plus Slugging) in KBO League (한국프로야구에서 장타율과 출루율(OPS) 예측 연구)

  • Dong Yun Shin;Jinho Kim
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.49-61
    • /
    • 2022
  • In sports, the proportion of data analysis in team management such as team strategy planning and marketing is increasing. In KBO(Korea Baseball Organization) league, in particular, plans such as recruiting players and fostering players are established to devise team strategies for the next year, such as FA and trade, at the end of a season. For these reasons, it is very important to predict players' performance for the next year. In this study, the target was limited to only the batter and tried to find out how to predict whether the performance of the next year will improve. As a standard record for rising and falling, OPS(On-Base Plus Slugging), which is easy to calculate and has a high relationship with team score, was used. In this study, 40 years of regular season data from 1982 to 2021 were used as data, and 11 machine learning classification models were used as experimental methods. Predicting the rise and fall of OPS, RBF SVM, Neural Net, Gaussian Process, and AdaBoost were more accurate than other classification models, and age did not significantly affect accuracy.

The effect of AI shopping assistant's motivated consumer innovativeness on satisfaction and purchase intention (AI 쇼핑 도우미 사용자의 소비자 혁신 동기가 만족도와 구매의도에 미치는 영향)

  • Hye Jung Kim ;Young-Ju Rhee
    • The Research Journal of the Costume Culture
    • /
    • v.31 no.5
    • /
    • pp.651-668
    • /
    • 2023
  • This study aims to help companies with efficient investment and marketing strategies by empirically verifying the impact on satisfaction and purchase intention for artificial intelligence-based digital technology supported shopping assistants introduced in e-commerce. Frequency, factor, SEM, and multiple group analysises were conducted using SPSS 26.0 and Amos 26.0. As a result, first, motivated consumer innovativeness elements of AI shopping assistant were derived into a total of four categories: functional, hedonic, rational, and reliable. Second, in the order of hedonic and rational, satisfaction with the AI shopping assistant was significantly affected, and in the order of rational and functional, purchase intention was significantly affected. The satisfaction with the AI shopping assistant did not affect the purchase intention. Third, in the case of hedonic, the AI-preferred group had a more significant effect on satisfaction than the human-preferred group, and in the case of rational, there was no difference by group in purchase intention. Thus, it was found that consumers prefer AI shopping helpers for e-commerce because they can shop reasonably and are functionally convenient. Therefore, when introducing AI shopping assistants, it is essential to include content that can compare and analyze fundamental information, such as product prices, as well as search functions and payment system compatibility that facilitate shopping.

Analysis of Teen Consumers' Perceptions and Behaviors Regarding AI Profile Photography (AI 프로필 사진에 대한 10대 소비자 인식 및 행동 분석)

  • Dohyup Lee;Yoojin Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.5
    • /
    • pp.699-705
    • /
    • 2024
  • The purpose of this study is to explore the positive application direction of this technology by investigating the perception and use of teenage adolescents about the recently emerged AI profile. The development of AI technology has brought about changes in various industries, and the AI profile service, which started in 2023, has gained great popularity as it is widely used as an SNS profile or personal blog image. However, it has recently become a social controversy as it is used for identification purposes such as social ID cards. However, as a result of a survey of adolescents, they did not use AI profiles for the purpose of issuing ID cards. Satisfaction with the AI profile service was high, but there were also complaints about its unnaturalness and limited style. And female students showed higher awareness and experience in using AI profiles than male students. This study can be used as a reference for developing AI profiles and establishing marketing strategies, and preparing national policies related to AI profiles.

Creating and Utilization of Virtual Human via Facial Capturing based on Photogrammetry (포토그래메트리 기반 페이셜 캡처를 통한 버추얼 휴먼 제작 및 활용)

  • Ji Yun;Haitao Jiang;Zhou Jiani;Sunghoon Cho;Tae Soo Yun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.25 no.2
    • /
    • pp.113-118
    • /
    • 2024
  • Recently, advancements in artificial intelligence and computer graphics technology have led to the emergence of various virtual humans across multiple media such as movies, advertisements, broadcasts, games, and social networking services (SNS). In particular, in the advertising marketing sector centered around virtual influencers, virtual humans have already proven to be an important promotional tool for businesses in terms of time and cost efficiency. In Korea, the virtual influencer market is in its nascent stage, and both large corporations and startups are preparing to launch new services related to virtual influencers without clear boundaries. However, due to the lack of public disclosure of the development process, they face the situation of having to incur significant expenses. To address these requirements and challenges faced by businesses, this paper implements a photogrammetry-based facial capture system for creating realistic virtual humans and explores the use of these models and their application cases. The paper also examines an optimal workflow in terms of cost and quality through MetaHuman modeling based on Unreal Engine, which simplifies the complex CG work steps from facial capture to the actual animation process. Additionally, the paper introduces cases where virtual humans have been utilized in SNS marketing, such as on Instagram, and demonstrates the performance of the proposed workflow by comparing it with traditional CG work through an Unreal Engine-based workflow.

Product Recommender Systems using Multi-Model Ensemble Techniques (다중모형조합기법을 이용한 상품추천시스템)

  • Lee, Yeonjeong;Kim, Kyoung-Jae
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.39-54
    • /
    • 2013
  • Recent explosive increase of electronic commerce provides many advantageous purchase opportunities to customers. In this situation, customers who do not have enough knowledge about their purchases, may accept product recommendations. Product recommender systems automatically reflect user's preference and provide recommendation list to the users. Thus, product recommender system in online shopping store has been known as one of the most popular tools for one-to-one marketing. However, recommender systems which do not properly reflect user's preference cause user's disappointment and waste of time. In this study, we propose a novel recommender system which uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user's preference. The research data is collected from the real-world online shopping store, which deals products from famous art galleries and museums in Korea. The data initially contain 5759 transaction data, but finally remain 3167 transaction data after deletion of null data. In this study, we transform the categorical variables into dummy variables and exclude outlier data. The proposed model consists of two steps. The first step predicts customers who have high likelihood to purchase products in the online shopping store. In this step, we first use logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. We perform above data mining techniques using SAS E-Miner software. In this study, we partition datasets into two sets as modeling and validation sets for the logistic regression and decision trees. We also partition datasets into three sets as training, test, and validation sets for the artificial neural network model. The validation dataset is equal for the all experiments. Then we composite the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. Bagging is the abbreviation of "Bootstrap Aggregation" and it composite outputs from several machine learning techniques for raising the performance and stability of prediction or classification. This technique is special form of the averaging method. Bumping is the abbreviation of "Bootstrap Umbrella of Model Parameter," and it only considers the model which has the lowest error value. The results show that bumping outperforms bagging and the other predictors except for "Poster" product group. For the "Poster" product group, artificial neural network model performs better than the other models. In the second step, we use the market basket analysis to extract association rules for co-purchased products. We can extract thirty one association rules according to values of Lift, Support, and Confidence measure. We set the minimum transaction frequency to support associations as 5%, maximum number of items in an association as 4, and minimum confidence for rule generation as 10%. This study also excludes the extracted association rules below 1 of lift value. We finally get fifteen association rules by excluding duplicate rules. Among the fifteen association rules, eleven rules contain association between products in "Office Supplies" product group, one rules include the association between "Office Supplies" and "Fashion" product groups, and other three rules contain association between "Office Supplies" and "Home Decoration" product groups. Finally, the proposed product recommender systems provides list of recommendations to the proper customers. We test the usability of the proposed system by using prototype and real-world transaction and profile data. For this end, we construct the prototype system by using the ASP, Java Script and Microsoft Access. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The participants for the survey are 173 persons who use MSN Messenger, Daum Caf$\acute{e}$, and P2P services. We evaluate the user satisfaction using five-scale Likert measure. This study also performs "Paired Sample T-test" for the results of the survey. The results show that the proposed model outperforms the random selection model with 1% statistical significance level. It means that the users satisfied the recommended product list significantly. The results also show that the proposed system may be useful in real-world online shopping store.

The Effect of Health and Environmental Message Framing on Consumer Attitude and WoM: Focused on Vegan Product (건강과 환경 메시지 프레이밍에 따른 소비자 태도와 구전에 미치는 영향: 비건 제품을 중심으로)

  • Park, Seoyoung;Lim, Boram
    • Journal of Service Research and Studies
    • /
    • v.13 no.3
    • /
    • pp.127-146
    • /
    • 2023
  • Recently, digital advertising has shifted towards delivering messages through short ads of less than 15 seconds, and on social media, ads need to convey the message within 5 seconds before consumers skip them. Although the length of advertisements has decreased, advancements in artificial intelligence algorithms and big data analysis have made it possible to deliver personalized messages that cater to consumers' interests. In this changing landscape, the importance of delivering tailored messages through short and efficient ads is increasing. In this study, we examined the effects of message framing as part of effective message delivery. Specifically, we examined the differences in the effects of two framings, "health" and "environment," for vegan products. The growing consumer interest in health and the environment has elevated the interest in vegan products, and the vegan market is expanding rapidly. Consumers purchase vegan products not only for personal health benefits but also due to their ethical responsibility towards the environment, which can be considered ethical consumption. Previous research has not shown the differences in the effects between health and environment message framings, and the research has been limited to vegan food products. This study investigates the differences in the effects of health and environment message framings using a dish soap product category. By identifying which advertising messages, either health or environment, are more effective in promoting vegan products, this study provides insights for companies to enhance their message framing strategies effectively.

User Experience Analysis and Management Based on Text Mining: A Smart Speaker Case (텍스트 마이닝 기반 사용자 경험 분석 및 관리: 스마트 스피커 사례)

  • Dine Yeon;Gayeon Park;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.22 no.2
    • /
    • pp.77-99
    • /
    • 2020
  • Smart speaker is a device that provides an interactive voice-based service that can search and use various information and contents such as music, calendar, weather, and merchandise using artificial intelligence. Since AI technology provides more sophisticated and optimized services to users by accumulating data, early smart speaker manufacturers tried to build a platform through aggressive marketing. However, the frequency of using smart speakers is less than once a month, accounting for more than one third of the total, and user satisfaction is only 49%. Accordingly, the necessity of strengthening the user experience of smart speakers has emerged in order to acquire a large number of users and to enable continuous use. Therefore, this study analyzes the user experience of the smart speaker and proposes a method for enhancing the user experience of the smart speaker. Based on the analysis results in two stages, we propose ways to enhance the user experience of smart speakers by model. The existing research on the user experience of the smart speaker was mainly conducted by survey and interview-based research, whereas this study collected the actual review data written by the user. Also, this study interpreted the analysis result based on the smart speaker user experience dimension. There is an academic significance in interpreting the text mining results by developing the smart speaker user experience dimension. Based on the results of this study, we can suggest strategies for enhancing the user experience to smart speaker manufacturers.

A Study on A Study on the University Education Plan Using ChatGPTfor University Students (ChatGPT를 활용한 대학 교육 방안 연구)

  • Hyun-ju Kim;Jinyoung Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.71-79
    • /
    • 2024
  • ChatGPT, an interactive artificial intelligence (AI) chatbot developed by Open AI in the U.S., gaining popularity with great repercussions around the world. Some academia are concerned that ChatGPT can be used by students for plagiarism, but ChatGPT is also widely used in a positive direction, such as being used to write marketing phrases or website phrases. There is also an opinion that ChatGPT could be a new future for "search," and some analysts say that the focus should be on fostering rather than excessive regulation. This study analyzed consciousness about ChatGPT for college students through a survey of their perception of ChatGPT. And, plagiarism inspection systems were prepared to establish an education support model using ChatGPT and ChatGPT. Based on this, a university education support model using ChatGPT was constructed. The education model using ChatGPT established an education model based on text, digital, and art, and then composed of detailed strategies necessary for the era of the 4th industrial revolution below it. In addition, it was configured to guide students to use ChatGPT within the permitted range by using the ChatGPT detection function provided by the plagiarism inspection system, after the instructor of the class determined the allowable range of content generated by ChatGPT according to the learning goal. By linking and utilizing ChatGPT and the plagiarism inspection system in this way, it is expected to prevent situations in which ChatGPT's excellent ability is abused in education.