• Title/Summary/Keyword: Artificial Intelligence Device

Search Result 188, Processing Time 0.024 seconds

A Study on Design Method of Smart Device for Industrial Disaster Detection and Index Derivation for Performance Evaluation (산업재해 감지 스마트 디바이스 설계 방안 및 성능평가를 위한 지표 도출에 관한 연구)

  • Ran Hee Lee;Ki Tae Bae;Joon Hoi Choi
    • Smart Media Journal
    • /
    • v.12 no.3
    • /
    • pp.120-128
    • /
    • 2023
  • There are various ICT technologies continuously being developed to reduce damage by industrial accidents. And research is being conducted to minimize damage in case of industrial accidents by utilizing sensors, IoT, big data, machine learning and artificial intelligence. In this paper, we propose a design method for a smart device capable of multilateral communication between devices and smart repeater in the communication shaded Areas such as closed areas of industrial sites, mountains, oceans, and coal mines. The proposed device collects worker's information such as worker location and movement speed, and environmental information such as terrain, wind direction, temperature, and humidity, and secures a safe distance between workers to warn in case of a dangerous situation and is designed to be attached to a helmet. For this, we proposed functional requirements for smart devices and design methods for implementing each requirement using sensors and modules in smart device. And we derived evaluation items for performance evaluation of the smart device and proposed an evaluation environment for performance evaluation in mountainous area.

Design and Implementation of a Lightweight On-Device AI-Based Real-time Fault Diagnosis System using Continual Learning (연속학습을 활용한 경량 온-디바이스 AI 기반 실시간 기계 결함 진단 시스템 설계 및 구현)

  • Youngjun Kim;Taewan Kim;Suhyun Kim;Seongjae Lee;Taehyoun Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.3
    • /
    • pp.151-158
    • /
    • 2024
  • Although on-device artificial intelligence (AI) has gained attention to diagnosing machine faults in real time, most previous studies did not consider the model retraining and redeployment processes that must be performed in real-world industrial environments. Our study addresses this challenge by proposing an on-device AI-based real-time machine fault diagnosis system that utilizes continual learning. Our proposed system includes a lightweight convolutional neural network (CNN) model, a continual learning algorithm, and a real-time monitoring service. First, we developed a lightweight 1D CNN model to reduce the cost of model deployment and enable real-time inference on the target edge device with limited computing resources. We then compared the performance of five continual learning algorithms with three public bearing fault datasets and selected the most effective algorithm for our system. Finally, we implemented a real-time monitoring service using an open-source data visualization framework. In the performance comparison results between continual learning algorithms, we found that the replay-based algorithms outperformed the regularization-based algorithms, and the experience replay (ER) algorithm had the best diagnostic accuracy. We further tuned the number and length of data samples used for a memory buffer of the ER algorithm to maximize its performance. We confirmed that the performance of the ER algorithm becomes higher when a longer data length is used. Consequently, the proposed system showed an accuracy of 98.7%, while only 16.5% of the previous data was stored in memory buffer. Our lightweight CNN model was also able to diagnose a fault type of one data sample within 3.76 ms on the Raspberry Pi 4B device.

A Study on the Development of Service Quality Scale in Traditional Market for Big Data Analysis

  • HWANG, Moon-Young
    • Korean Journal of Artificial Intelligence
    • /
    • v.7 no.1
    • /
    • pp.23-59
    • /
    • 2019
  • The purpose of this study is to develop a measure of service quality in the traditional market by examining previous research on the service quality of the traditional market studied so far. After defining basic concepts through definition of traditional market and existing studies, 5 categories of configuration items for SERVQUAL measurement in traditional market were made up based on existing researches related to definition of service quality and service quality of traditional market. A survey was conducted on the items that fit the intention of this study and various statistical analyzes were conducted. Statistical analysis was performed using SPSS 22.0 and AMOS 22.0. The reliability of the items was measured by the reliability test, and the predictability and accuracy of the items were examined. The validity of the measured variables was verified through confirmatory factor analysis. Reliability, empathy, responsiveness, certainty, and tangibility were the most important factors in this study. Responsiveness factors include communication, time reduction, real time, promptness. Assurance factors include the assurance of delivery, prompt answers, product knowledge items. Tangibility factors include, convenient device systems, location information, presence as a fact, and as a result, the latest modern items are adopted. The quality of service in the traditional market developed in this study was found to be good in reliability and validity test. Confirmatory factor analysis result using structural equation model also met the conformity index standard. If service satisfaction is measured based on this research, basic data can be presented to policy makers who implement policies on traditional markets to make the right decisions. In addition, it will be able to provide traditional market operators with operational strategy and marketing data. In the future, based on the traditional market service quality scale developed in this study, it is necessary to grasp the factors to be continuously managed to improve the service quality of the traditional market, user satisfaction, and intention to use.

The study of blood glucose level prediction model using ballistocardiogram and artificial intelligence (심탄도와 인공지능을 이용한 혈당수치 예측모델 연구)

  • Choi, Sang-Ki;Park, Cheol-Gu
    • Journal of Digital Convergence
    • /
    • v.19 no.9
    • /
    • pp.257-269
    • /
    • 2021
  • The purpose of this study is to collect biosignal data in a non-invasive and non-restrictive manner using a BCG (Ballistocardiogram) sensor, and utilize artificial intelligence machine learning algorithms in ICT and high-performance computing environments. And it is to present and study a method for developing and validating a data-based blood glucose prediction model. In the blood glucose level prediction model, the input nodes in the MLP architecture are data of heart rate, respiration rate, stroke volume, heart rate variability, SDNN, RMSSD, PNN50, age, and gender, and the hidden layer 7 were used. As a result of the experiment, the average MSE, MAE, and RMSE values of the learning data tested 5 times were 0.5226, 0.6328, and 0.7692, respectively, and the average values of the validation data were 0.5408, 0.6776, and 0.7968, respectively, and the coefficient of determination (R2) was 0.9997. If research to standardize a model for predicting blood sugar levels based on data and to verify data set collection and prediction accuracy continues, it is expected that it can be used for non-invasive blood sugar level management.

Medicare's Reimbursement for Innovative Technologies: Focusing on Artificial Intelligence Medical Devices (미국의 혁신의료기술 지불보상제도: 인공지능 의료기기를 중심으로)

  • Lee, Boram;Yim, Jaejun;Yang, Jangmi
    • Health Policy and Management
    • /
    • v.32 no.2
    • /
    • pp.125-136
    • /
    • 2022
  • The costliness index (CI) is an index that is used in various ways to improve the quality of medical care and the management of appropriate treatment in medical institutions. However, the current calculation method for CI has a limitation in reflecting the actual medical cost of the patient unit because the outpatient and inpatient costs are evaluated separately. It is desirable to calculate the CI by integrating the medical cost into the episode unit. We developed an episode-based CI method using the episode classification system of the Centers for Medicare and Medicaid Services to the National Inpatient Sample data in Korea, which can integrate the admission and ambulatory care cost to episode unit. Additionally, we compared our new method with the previous method. In some episodes, the correlation between previous and episode-based CI was low, and the proportion of outpatient treatment costs in total cost and readmission rates are high. As a result of regression analysis, it is possible that the level of total medical costs of the patient unit in low volume medical institute and rural area has been underestimated. High proportion of outpatient treatment cost in total medical cost means that some medical institutions may have provided medical services in the ambulatory care that are ancillary to inpatient treatment. In addition, a high readmission rate indicates insufficient treatment service for inpatients, which means that previous CI may not accurately reflect actual patient-based treatment costs. Therefore, an integrated patient-unit classification system which can be used as a more effective CI indicator is needed.

Implementation of Monitoring System of the Living Waste based on Artificial Intelligence and IoT (AI 및 IoT 기반의 생활 폐기물 모니터링 시스템 구현)

  • Kim, Sang-Hyun;Kang, Young-Hoon;Yoon, Dal-Hwan
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.302-310
    • /
    • 2020
  • In this paper, we have implemented the living waste analysis system based on IoT and AI(Artificial Intelligence), and proposed effective waste process and management method. The Jeju location have the strong point to devise a stratagem and estimate waste quantization, rather than others. Especially, we can recognized the amount variation of waste to the residence people compare to the sightseer number, and the good example a specific waste duty. Thus this paper have developed the IoT device for interconnecting the existed CCTV camera, and use the AI algorithm to analysis the waste image. By using these decision of image analysis, we can inform their deal commend and a decided information to the map of the waste cars. In order to evaluate the performance of IoT, we have experimented the electromagnetic compatibility under a national official authorization KN-32, KN61000-4-2~6, and obtained the stable experimental results. In the further experimental results, we can applicable for an data structure for precise definition command by using the simulated several waste image with artificial intelligence algorithm.

A Study on the Current Status and Application Strategies of the Smart Devices in the Library (도서관에서의 스마트 디바이스 활용 현황분석 및 서비스 적용방안)

  • Kim, Tae-Young;Park, Tae-Yeon;Yang, Dongmin;Oh, Hyo-Jung
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.51 no.4
    • /
    • pp.203-226
    • /
    • 2017
  • The advent of the fourth industrial revolution has led to various technologies such as bigdata, the internet of things, artificial intelligence etc. Based on these innovations, the types of information services can changed in the library. The focus is on smart device. This study aims to identify utilization status and service implications of the smart device in the library. To achieve this goal, we conducted current status analysis of the smart device in the library through literature research and online search and gathered the executives views of practical librarians. Consequently, we proposed improvement of library service by using smart device. The results of this study will be expected to help next generation library establish service strategies.

The Design of IoT Device System for Disaster Prevention using Sound Source Detection and Location Estimation Algorithm (음원탐지 및 위치 추정 알고리즘을 이용한 방재용 IoT 디바이스 시스템 설계)

  • Ghil, Min-Sik;Kwak, Dong-Kurl
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.8
    • /
    • pp.53-59
    • /
    • 2020
  • This paper relates to an IoT device system that detects sound source and estimates the sound source location. More specifically, it is a system using a sound source direction detection device that can accurately detect the direction of a sound source by analyzing the difference of arrival time of a sound source signal collected from microphone sensors, and track the generation direction of a sound source using an IoT sensor. As a result of a performance test by generating a sound source, it was confirmed that it operates very accurately within 140dB of the acoustic detection area, within 1 second of response time, and within 1° of directional angle resolution. In the future, based on this design plan, we plan to commercialize it by improving the reliability by reflecting the artificial intelligence algorithm through big data analysis.

Content-Aware D2D Caching for Reducing Visiting Latency in Virtualized Cellular Networks

  • Sun, Guolin;Al-Ward, Hisham;Boateng, Gordon Owusu;Jiang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.514-535
    • /
    • 2019
  • Information-centric networks operate under the assumption that all network components have built-in caching capabilities. Integrating the caching strategies of information centric networking (ICN) with wireless virtualization improves the gain of virtual infrastructure content caching. In this paper, we propose a framework for software-defined information centric virtualized wireless device-to-device (D2D) networks. Enabling D2D communications in virtualized ICN increases the spectral efficiency due to reuse and proximity gains while the software-defined network (SDN) as a platform also simplifies the computational overhead. In this framework, we propose a joint virtual resource and cache allocation solution for latency-sensitive applications in the next-generation cellular networks. As the formulated problem is NP-hard, we design low-complexity heuristic algorithms which are intuitive and efficient. In our proposed framework, different services can share a pool of infrastructure items. We evaluate our proposed framework and algorithm through extensive simulations. The results demonstrate significant improvements in terms of visiting latency, end user QoE, InP resource utilization and MVNO utility gain.

Development of AI-Based Condition Monitoring System for Failure Diagnosis of Excavator's Travel Device (굴착기 주행디바이스의 고장 진단을 위한 AI기반 상태 모니터링 시스템 개발)

  • Baek, Hee Seung;Shin, Jong Ho;Kim, Seong Joon
    • Journal of Drive and Control
    • /
    • v.18 no.1
    • /
    • pp.24-30
    • /
    • 2021
  • There is an increasing interest in condition-based maintenance for the prevention of economic loss due to failure. Moreover, immense research is being carried out in related technologies in the field of construction machinery. In particular, data-based failure diagnosis methods that employ AI (machine & deep learning) algorithms are in the spotlight. In this study, we have focused on the failure diagnosis and mode classification of reduction gear of excavator's travel device by using the AI algorithm. In addition, a remote monitoring system has been developed that can monitor the status of the reduction gear by using the developed diagnosis algorithm. The failure diagnosis algorithm was performed in the process of data acquisition of normal and abnormal under various operating conditions, data processing and analysis by the wavelet transformation, and learning. The developed algorithm was verified based on three-evaluation conditions. Finally, we have built a system that can check the status of the reduction gear of travel devices on the web using the Edge platform, which is embedded with the failure diagnosis algorithm and cloud.