Moohyun Song;Kyumin Kim;Jihun Moon;Yurim Kim;Chaewon Nam;Jongbin Park;Kyungyong Lee
IEMEK Journal of Embedded Systems and Applications
/
v.18
no.6
/
pp.293-301
/
2023
With the advancement of artificial intelligence and its various use cases, accessing it through edge computing environments is gaining traction. However, due to the nature of edge computing environments, efficient management and optimization of clusters distributed in different geographical locations is considered a major challenge. To address these issues, this paper proposes a centralization and automation tool called KubEVC-Agent based on Kubernetes. KubEVC-Agent centralizes the deployment, operation, and management of edge clusters and presents a use case of the data transformation for optimizing intra-cluster communication. This paper describes the components of KubEVC-Agent, its working principle, and experimental results to verify its effectiveness.
This paper proposes a CNN architecture as value function network of an artificial intelligence Othello game agent and its learning scheme using reinforcement learning algorithm. We propose an approach to construct the value function network by using CNN to learn the records of professional players' real game and an approach to enhance the network parameter by learning from self-play using reinforcement learning algorithm. The performance of value function network CNN was compared with existing ANN by letting two agents using each network to play games each other. As a result, the winning rate of the CNN agent was 69.7% and 72.1% as black and white, respectively. In addition, as a result of applying the reinforcement learning, the performance of the agent was improved by showing 100% and 78% winning rate, respectively, compared with the network-based agent without the reinforcement learning.
Games such as sports, RTS, RPG, which teams of players play, require advanced artificial intelligence technology for team management. The existing artificial intelligence enables an intelligent agent to have the autonomy solving problem by itself, but to lack interaction and cooperation between agents. This paper presents "Level Unified Approach Method" with effective role allocation and autonomy in multiagent system. This method allots sub-goals to agents using role information to accomplish a global goal. Each agent makes a decision and takes actions by itself in dynamic environments. Global goal of Team coordinates to allocated role in tactics approach. Each agent leads interactive cooperation by sharing state information with another using Databoard, As each agent has planning capacity, an agent takes appropriate actions for playing allocated roles in dynamic environments. This cooperation and interactive operation between agents causes a collision problem, so it approaches at tactics side for controlling this problem. Our experimental result shows that "Level Unified Approach Method" has better performance than existing rental approach method or de-centralized approach method.
Kim, Jun-Yeup;Ko, Kwang-Eun;Park, Seung-Min;Sim, Kwee-Bo
Journal of Institute of Control, Robotics and Systems
/
v.18
no.5
/
pp.465-470
/
2012
This paper proposes a distributed autonomous control method of swarm robot behavior strategy based on artificial immune system and an optimization strategy for artificial immune system. The behavior strategies of swarm robot in the system are depend on the task distribution in environment and we have to consider the dynamics of the system environment. In this paper, the behavior strategies divided into dispersion and aggregation. For applying to artificial immune system, an individual of swarm is regarded as a B-cell, each task distribution in environment as an antigen, a behavior strategy as an antibody and control parameter as a T-cell respectively. The executing process of proposed method is as follows: When the environmental condition changes, the agent selects an appropriate behavior strategy. And its behavior strategy is stimulated and suppressed by other agent using communication. Finally much stimulated strategy is adopted as a swarm behavior strategy. In order to decide more accurately select the behavior strategy, the optimized parameter learning procedure that is represented by stimulus function of antigen to antibody in artificial immune system is required. In this paper, particle swarm optimization algorithm is applied to this learning procedure. The proposed method shows more adaptive and robustness results than the existing system at the viewpoint that the swarm robots learning and adaptation degree associated with the changing of tasks.
Journal of the Korean Crystal Growth and Crystal Technology
/
v.19
no.1
/
pp.48-53
/
2009
The effect of bloating and fluxing agent on the microstructure and physical properties were studied in manufacturing the artificial lightweight aggregates of bulk density below] using clay and stone sludge. In case of the aggregates added only with bloating agent, the bulk density and water absorption were $0.5{\sim}1.0$ and $41{\sim}110%$ respectively but the microstucture was not uniform with a rough appearance. For the aggregates added with a fluxing agent and one bloating agent, a part of shell was lost due to explosion of specimen caused by over-bloating during a sintering. The mixed addition of bloating agents with vacuum oil, carbon and ${Fe_2}{O_3}$ made the microstructure homogeneous by generating an uniform black core and shell structure. The aggregates added with mixed agents and sintered at $1200^{\circ}C$ showed the bulk density 67 % lower and water absorption 48 times higher than those of the specimen with no additives. ]n this study, the artificial lightweight aggregates showing the bulk density of $0.5{\sim}1.0$ and water absorption of $50{\sim}125%$ could be fabricated to apply to various fields.
Evolving in artificial agent is an extremely difficult problem, but on the other hand, a challenging task. At present the studies mainly centered on single agent learning problem. In our case, we use simulated soccer to investigate multi-agent cooperative learning. Consider the fundamental differences in learning mechanism, existing reinforcement learning algorithms can be roughly classified into two types-that based on evaluation functions and that of searching policy space directly. Genetic Programming developed from Genetic Algorithms is one of the most well known approaches belonging to the latter. In this paper, we give detailed algorithm description as well as data construction that are necessary for learning single agent strategies at first. In following step moreover, we will extend developed methods into multiple robot domains. game. We investigate and contrast two different methods-simple team learning and sub-group loaming and conclude the paper with some experimental results.
Recently, research has been actively conducted to create artificial intelligence agents that learn games through reinforcement learning. There are several factors that determine performance when the agent learns a game, but using any of the activation functions is also an important factor. This paper compares and evaluates which activation function gets the best results if the agent learns the game through reinforcement learning in the 2D racing game environment. We built the agent using a reinforcement learning algorithm and a neural network. We evaluated the activation functions in the network by switching them together. We measured the reward, the output of the advantage function, and the output of the loss function while training and testing. As a result of performance evaluation, we found out the best activation function for the agent to learn the game. The difference between the best and the worst was 35.4%.
International Journal of Internet, Broadcasting and Communication
/
v.14
no.2
/
pp.40-46
/
2022
Recently, as the need for data access by integrating information in a distributed cloud environment increases in enterprise-wide enterprises, interoperability for collaboration between existing legacy systems is emphasized. In order to interconnect independent legacy systems, it is necessary to overcome platform heterogeneity and semantic heterogeneity. To solve this problem, middleware was built using EMRA (Extended MetaData Registry Access) based on ISO/IEC 11179. However, the designed middleware cannot guarantee the efficiency of information utilization because it does not have an adjustment function for each node's resource status and work status. Therefore, it is necessary to manage and adjust the legacy system. In this paper, we coordinate the correct data access between the information requesting agent and the information providing agent, and integrate it by designing a cooperative agent responsible for information monitoring and task distribution of each legacy system and resource management of local nodes. to make efficient use of the available information.
The micro robot soccer playing system is introduced. Studying and learning, evolving in artificial agents are very difficult problem, but on the other hand we think more powerfully challenging task. In our laboratory, this soccer-system studies mainly centered on single agent learning problem. The construction of such experimental system has involved lots of kinds of challenges such as robot designing, vision processing, motion controlling. At last we will give some results showing that the proposed approach is feasible to guide the design of common agents system.
Purpose As artificial intelligence voice agents (AIVA) have been widely adopted in services, diverse forms of their voices, which are the main interface with users, have been experimented. The purpose of this study is to examine how users evaluate vocal characteristics (gender, voice pitch, and voice pace) of AIVA, depending on prior research on human voice attractiveness. Design/methodology/approach This study employed an experimental survey which 516 participated in. Each participant was randomly assigned into one of eight situations (e.g., male - higher pitch - faster pace) and listened a AIVA voice sample, which introduce weather information. Next, a participant answered three consequence factors (attractiveness, trust, and anthropomorphism). Findings The results reveal that female voices of AIVA were perceived as more attractive and trustworthy than male voices. As far as voice pitch goes, while lower-pitch voices were preferred in female voices, higher-pitch voices were preferred in male voices. Finally, faster voices of AIVA were more attractive than slower voices.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.