• 제목/요약/키워드: Artficial Neural Networks

검색결과 3건 처리시간 0.014초

개선된 인공신경망의 학습방법에 의한 강구조물의 설계 (Design of Steel Structures Using the Neural Networks with Improved Learning)

  • 최병한;임정환
    • 한국강구조학회 논문집
    • /
    • 제17권6호통권79호
    • /
    • pp.661-672
    • /
    • 2005
  • 본 연구에서는 많은 양의 함수 계산을 요구하는 확률론적 최적화 기법을 보다 효과적으로 강구조물에 적용하여 수행하고자 한다. 다양한 과학, 응용공학 분야에서 많은 시간이 소요되는 과정을 대체하는데 효과적인 도구로 출현한 인공신경망을 최적화 과정 중 많은 수의 유한요소 해석이 요구되는 재해석 문제에 적용함으로서 유한요소법의 평형방정식의 해의 근사해를 추정하여 재해석과정을 보다 간단하고 용이하게 수행하고자 한다. 또한 이용된 인공신경망의 학습효과의 개선을 위해 유전알고리즘을 적용한다. 확률론적 구조최적화 기법으로는 진화론적 방법에 기초한 알고리즘을 사용한다. 수치 예로써 전형적인 체적(중량)문제와 실 경비함수를 목적함수로 갖는 강구조물 모형에 본 연구의 알고리즘을 적용하여 본 알고리즘의 적용성과 타당성을 증명하였다.

인공신경망 이론을 이용한 홍수유출 예측 시스템 개발 - GUI_FFS 개발 및 적용 - (Development of Flood Runoff Forecasting System by using Artificial Neural Networks - Development & Application of GUI_FFS -)

  • 박성천;오창열;김동렬;진영훈
    • 대한토목학회논문집
    • /
    • 제26권2B호
    • /
    • pp.145-152
    • /
    • 2006
  • 본 연구에서는 영산강 유역의 본류를 대표하는 나주지점과 황룡강 유역을 대표하는 선암지점에 대하여 물리적인 매개변수를 이용하지 않는 인공신경망 이론을 이용하여 강우-유출 과정의 비선형 모형을 개발하였다. 본 연구결과 나주지점에서는 ANN_NJ_9 모형이 선암지점에서는 ANN_SA_9 모형이 강우-유출 특성을 가장 잘 반영하였다. 또한, 본 연구에서 개발한 GUI_FFS에 대하여 기 확보된 강우 및 유출량을 적용한 결과 실측치와 예측치 간에 0.98이상의 $R^2$값을 보임으로서 향후 수자원 및 하천계획 수립과 그에 따른 운영 및 관리에 효율성을 더할 수 있을 것이라 판단된다.

블록체인 기반의 연합학습 구현 (An Implementation of Federated Learning based on Blockchain)

  • 박준범;박종서
    • 한국빅데이터학회지
    • /
    • 제5권1호
    • /
    • pp.89-96
    • /
    • 2020
  • 인공신경망(artficial neural networks)를 활용한 딥러닝은 최근 이미지인식, 빅데이터 및 데이터분석 등 다양한 분야에서 연구되고 개발이 진행되고 있다. 하지만 데이터 프라이버시 침해 이슈와 학습을 많이 할수록 소모 비용과 시간이 증가하는 문제점이 있어서 이를 해결하기 위해 연합학습(Federated Learning)이 연구되었다. 연합학습에서는 프라이버시 문제를 완화하면서, 분산 처리 시스템의 이점을 가져오는 학습기법을 제시하였다. 하지만 여전히 연합학습에서도 프라이버시 및 보안 문제가 존재한다. 그래서 우리는 연합학습의 서버에 해당하는 부분을 블록체인으로 대체하여 연합학습의 문제점인 프라이버시 문제와 보안 문제를 해결하였다. 또한 사용자가 제출하는 데이터에 대한 보상을 지급하여서 동기를 부여하고, 기존 성능은 유지하면서도 더 적은 비용의 유지비를 필요로 하는 시스템을 연구하였다. 본 논문에서는 우리가 개발한 시스템의의 타당성을 보이기 위해 실험결과를 제시하면서 기존 연합학습과 연구한 블록체인 기반의 연합학습 결과를 비교한다. 또한 향후 연구로 보안문제에 대한 해법과 와 적용 가능한 비즈니스 분야를 제시를 보여주면서 논문을 마무리 하였다.