• Title/Summary/Keyword: Arterial smooth muscle

Search Result 106, Processing Time 0.02 seconds

Electrolysis of Physiological Salt Solution Generates a Factor that Relaxes Vascular Smooth Muscle

  • Song, Pil-Oh;Chang, Ki-Churl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.2
    • /
    • pp.217-223
    • /
    • 1998
  • Oxygen-derived free radicals have been implicated in many important functions in the biological system. Electrical field stimulation (EFS) causes arterial relaxation in animal models. We found that EFS applied to neither muscle nor nerve but to Krebs solution caused a relaxation of rat aorta that had been contracted with phenylephrine. In the present study, therefore, we investigated the characteristics of this EIRF (electrolysis-induced relaxing factor) using rat isolated aorta. Results indicated that EIRF acts irrespective of the presence of endothelium. EIRF shows positive Griess reaction and is diffusible and quite stable. EIRF-induced relaxation was stronger on PE-contracted aorta than on KCl-contracted one, and inhibited by the pretreatment with methylene blue. Zaprinast, a cGMP-specific phosphodiesterase inhibitor, potentiated the EIRF-induced relaxation. $N^G-nitro-L-arginine$, NO synthase inhibitor, did not inhibit the EIRF-induced relaxation. Deferroxamine, but not ascorbic acid, DMSO potentiated the EIRF-induced relaxation. These results indicate that electrolysis of Krebs solution produces a factor that relaxes vascular smooth muscle via cGMP-mediated mechanism.

  • PDF

Structure and Pharmacology of Glycosaminoglycans of Clinical Interest

  • Bianchini, Pietro
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1993.04a
    • /
    • pp.33-33
    • /
    • 1993
  • Among the Glycosaminoglycans (GAGs), Heparin and its fractions or fragments, obtained by several different processes, are of considerable interest .In these last few years, the goal of the researchers in this field has been finding molecular species having selective action, like for instance species having only antithrombotic activity disjointed from any anticoagulant effect, and assessing the effects of these GAGs and of other GAGs, like dermatan sulphate, not only in the field of venous or arterial thrombosis but also on cell factors like smooth muscle cell proliferation and even on aspects of antiinflammatory activity.

  • PDF

Pharmacological Evaluation of the Glycosidated Phenylpropanoids Containing Fraction from Orobanche crenata

  • El-Shabrawy, O.A.;Melek, F.R.;Ibrahim, M.;Radwan, A.S.
    • Archives of Pharmacal Research
    • /
    • v.12 no.1
    • /
    • pp.22-25
    • /
    • 1989
  • Ethylacetate fraction from Orobanche crenata, contained two phenylpropanoid glycosides, exhibited some pharmacological properties. It was found to be non-toxic to rats in oral doses up to 500mg/100gm body weight. In large doses, it lowered the arterial blood pressure of anaethetised rats, and produced significant analgesic effect in mice and diuretic effect in rats. It further showed smooth muscle relaxant and antispasmodic effects in the isolated rabbit intestine and guinea-pig ileum respectively.

  • PDF

Effect of Lespedezea Cuneata on the Contraction of Rabbit Common Carotid Artery and Corpus Cavernosum (야관문(夜關門)이 토끼의 혈관과 음경해면체 수축에 미치는 영향)

  • Park, Sun Young;Kim, Ho Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.6
    • /
    • pp.809-817
    • /
    • 2013
  • The aim of this study was to evaluate the mechanism of vasodilation of Lespedezea cuneata(LC) in rabbit common carotid artery and cavernosal smooth muscle. LC relaxed arterial strips precontracted with norepinephrine and cavernosal strips precontracted with phenylephrine. The arterial relaxation effects of LC was endothelium-dependent. $N{\omega}$-nitro-L-arginine(L-NNA), NOS inhibitor, methylene blue(MB), cGMP inhibitor, indomethacin(IM), cyclo-oxygenase inhibitor and tetraethylammonium chloride(TEA), KCa-channel blocker attenuate the relaxation responses of LC in arterial strips. In $Ca^{2+}$-free krebs-ringer solution, pretreatment of LC extract significantly reduced the contraction induced by addition $Ca^{2+}$. L-NNA reduced LC extract-induced relaxation in cavernosal strips, but IM, TEA and MB didn't affect LC extract-induced relaxation. When LC extract was applicated on human umbilical vein endothelial cell, the nitric oxide concentration was increased. We conclude that in rabbit common carotid artery, LC may suppress influx of extra-cellular $Ca^{2+}$ through the release of endothelium derived relaxing factor including nitric oxide, prostacyclin, endothelium derived hyperpolarizing factor. And LC exerts a relaxing effect on corpus cavernosum through activating the NO.

Effects of Demethoxycurcumin Isolated from Radix Curcumae on Arterial Restenosis in Rats (울금(鬱金)에서 분리된 demethoxycurcumin이 백서의 혈관재협착에 미치는 효과)

  • Kil, In-Ho;Chong, Myong-Soo;Shin, Chang-Ho;Pae, Hyun-Ock;Chung, Hun-Taeg;Lee, Ki-Nam
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.12 no.3
    • /
    • pp.67-80
    • /
    • 2008
  • The pathobiologic process of arterial stenosis following balloon angioplasty continues to be an enigmatic problem in clinical settings. This study investigates the ability of demethoxycurcumin, a curcuminoid isolated from Radix Curcumae, to attenuate balloon injury-induced neointima(NI) formation in the rat carotid artery. It was found that demethoxycurcumin induced inducible heme oxygenase(HO-1) expression and inhibited dose-dependently cellular proliferation in rat vascular smooth muscle cells. Perivascular application of demethoxycurcumin immediately following injury significantly reduced NI area and NI thickness 2 weeks post-injury. Interestingly, treatment with tin-protoporphyrin IX, a HO inhibitor, reversed the effects of demethoxycurcumin on NI formation. These results implicate demethoxycurcumin as a potent new therapeutic agent that is capable of reducing post-angioplasty arterial stenosis through induction of the HO-1 expression.

  • PDF

Different Mechanisms for the Activation of Vascular Smooth Muscle by Norepinephrine and Depolarization (혈관 평활근의 수축기전에 관한 연구)

  • Hong, Yong-Woo;Ko, Kwang-Wook;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • v.21 no.2
    • /
    • pp.191-200
    • /
    • 1987
  • The activation mechanism of the sustained contractions induced by norepinephrine and K-depolarization was studied in renal vascular muscle. Helical strips of arterial muscle were prepared from rabbit renal arteries. All experiments were performed in Tris-buffered Tyrode solution which was aerated with 100% $O_2$ and kept at $35^{\circ}C$. Renal arterial muscles developed a contracture rapidly when exposed to a 40 mM K-Tyrode solution. In the absence of external $Ca^{2+}$, however, no K-contracture appeared. The contracture induced by K-depolarization was abolished by the treatment with $Ca^{2+}-antagonist\;(verapamil)$ or lanthanum $(La^{3+})$. From these results, it is obvious that K-contracture of renal arterial strip required $Ca^{2+}$ in the medium and this contracture was developed by the increased $Ca^{2+}-influx$ due to K-depolarization. Noradrenaline (5 mg/l) induced also a similar sustained contraction rapidly in all strips. Even on the K-contracture and in $Ca^{2+}-free$ Tyrode solution and also in the Tyrode solution pretreated with verapamil or $La^{3+}$, noradrenaline produced a contraction. However, the contraction in $Ca^{2+}-free$ Tyrode solution was not sustained and decreased gradually. The amplitude of noradrenaline-induced contracture was dependent on external $Ca^{2+}$; The contracture increased dose-dependently, but over 3 mM $Ca^{2+}$, decreased. The results of this experiment suggest that K-contracture was developed by an increased $Ca^{2+}-influx$ due to membrane depolarization, while noradrenaline-induced contracture was developed by both transmembrane $Ca^{2+}-influx$ and the mobilizaiton of cellular $Ca^{2+}$

  • PDF

Nortriptyline, a tricyclic antidepressant, inhibits voltage-dependent K+ channels in coronary arterial smooth muscle cells

  • Shin, Sung Eun;Li, Hongliang;Kim, Han Sol;Kim, Hye Won;Seo, Mi Seon;Ha, Kwon-Soo;Han, Eun-Taek;Hong, Seok-Ho;Firth, Amy L.;Choi, Il-Whan;Bae, Young Min;Park, Won Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.225-232
    • /
    • 2017
  • We demonstrated the effect of nortriptyline, a tricyclic antidepressant drug and serotonin reuptake inhibitor, on voltage-dependent $K^+$ (Kv) channels in freshly isolated rabbit coronary arterial smooth muscle cells using a whole-cell patch clamp technique. Nortriptyline inhibited Kv currents in a concentration-dependent manner, with an apparent $IC_{50}$ value of $2.86{\pm}0.52{\mu}M$ and a Hill coefficient of $0.77{\pm}0.1$. Although application of nortriptyline did not change the activation curve, nortriptyline shifted the inactivation current toward a more negative potential. Application of train pulses (1 or 2 Hz) did not change the nortriptyline-induced Kv channel inhibition, suggesting that the effects of nortiprtyline were not use-dependent. Preincubation with the Kv1.5 and Kv2.1/2.2 inhibitors, DPO-1 and guangxitoxin did not affect nortriptyline inhibition of Kv channels. From these results, we concluded that nortriptyline inhibited Kv channels in a concentration-dependent and state-independent manner independently of serotonin reuptake.

Suppression of Peripheral Sympathetic Activity Underlies Protease-Activated Receptor 2-Mediated Hypotension

  • Kim, Young-Hwan;Ahn, Duck-Sun;Joeng, Ji-Hyun;Chung, Seungsoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.6
    • /
    • pp.489-495
    • /
    • 2014
  • Protease-activated receptor (PAR)-2 is expressed in endothelial cells and vascular smooth muscle cells. It plays a crucial role in regulating blood pressure via the modulation of peripheral vascular tone. Although some reports have suggested involvement of a neurogenic mechanism in PAR-2-induced hypotension, the accurate mechanism remains to be elucidated. To examine this possibility, we investigated the effect of PAR-2 activation on smooth muscle contraction evoked by electrical field stimulation (EFS) in the superior mesenteric artery. In the present study, PAR-2 agonists suppressed neurogenic contractions evoked by EFS in endothelium-denuded superior mesenteric arterial strips but did not affect contraction elicited by the external application of noradrenaline (NA). However, thrombin, a potent PAR-1 agonist, had no effect on EFS-evoked contraction. Additionally, ${\omega}$-conotoxin GVIA (CgTx), a selective N-type $Ca^{2+}$ channel ($I_{Ca-N}$) blocker, significantly inhibited EFS-evoked contraction, and this blockade almost completely occluded the suppression of EFS-evoked contraction by PAR-2 agonists. Finally, PAR-2 agonists suppressed the EFS-evoked overflow of NA in endothelium-denuded rat superior mesenteric arterial strips and this suppression was nearly completely occluded by ${\omega}$-CgTx. These results suggest that activation of PAR-2 may suppress peripheral sympathetic outflow by modulating activity of $I_{Ca-N}$ which are located in peripheral sympathetic nerve terminals, which results in PAR-2-induced hypotension.

Effect of pH on Calcium-Activated Potassium Channels in Pulmonary Arterial Smooth Muscle Cells of the Rabbit

  • Lee, Suk-Ho;Ho, Won-Kyung;Earm, Yung-E
    • The Korean Journal of Physiology
    • /
    • v.25 no.1
    • /
    • pp.17-26
    • /
    • 1991
  • Single smooth muscle cells of the rabbit pulmonary artery were isolated by treatment with collagenase and elastase. Using the patch clamp technique, potassium channel activity was recorded from the inside-out membrane patch. The channel had a sin히e channel conductance of about 360 pS in symmetrical concentration of K on both sides of the patch, 150 mM, and had a linear current-voltage relationship. During the application of 10 mM tetraethylammonium (TEA) to the intracellular membrane surface, the amplitude of single channel current was reduced and very rapid flickering appeared. The open probability $(P_0)$ of this channel was increased by increasing positivity of the potential across the patch membrane, with e-fold increase by 20 mV depolarization, and by increasing the internal $Ca^{2+}$ concentration. These findings are consistent with those of large conductance Ca-activated K channels reported in other tissues. But the shortening of the mean open time by increasing $[Ca^{2+}]_i$, was an unexpected result and one additional closed state which might be arisen from a block of the open channel by Ca binding was suggested. The $P_0-membrane$ potential relationship was modulated by internal pH. Decreasing pH reduced $P_0$. Increasing pH not only increased $P_0$ but also weakened the voltage dependency of the channel opening. The modulation of Ca-activated K channel by pH was thought to be related to the mechanism of regulation of vascular tone by the pH change.

  • PDF

The Src/PLC/PKC/MEK/ERK Signaling Pathway Is Involved in Aortic Smooth Muscle Cell Proliferation induced by Glycated LDL

  • Cho, Hyun-Mi;Choi, Sung Hee;Hwang, Ki-Chul;Oh, Sue-Young;Kim, Ho-Gyung;Yoon, Deok-Hyo;Choi, Myung-Ae;Lim, So Yeon;Song, Heesang;Jang, Yangsoo;Kim, Tae Woong
    • Molecules and Cells
    • /
    • v.19 no.1
    • /
    • pp.60-66
    • /
    • 2005
  • Low density lipoproteins (LDL) play important roles in the pathogenesis of atherosclerosis. Diabetes is associated with accelerated atherosclerosis leading to cardiovascular disease in diabetic patients. Although LDL stimulates the proliferation of arterial smooth muscle cells (SMC), the mechanisms are not fully understood. We examined the effects of native LDL and glycated LDL on the extracellular signal-regulated kinase (ERK) pathway. Addition of native and glycated LDL to rat aorta SMCs (RASMCs) stimulated ERK phosphorylation. ERK phosphorylation was not affected by exposure to the $Ca^{2+}$ chelator BAPTA-AM but inhibition of protein kinase C (PKC) with GF109203X, inhibition of Src kinase with PP1 ($5{\mu}M$) and inhibition of phospholipase C (PLC) with U73122/U73343 ($5{\mu}M$) all reduced ERK phosphorylation in response to glycated LDL. In addition, pretreatment of the RASMCs with a cell-permeable mitogen-activated protein kinase kinase (MEK) inhibitor (PD98059, $5{\mu}M$) markedly decreased ERK phosphorylation in response to native and glycated LDL. These findings indicate that ERK phosphorylation in response to glycated LDL involves the activation of PKC, PLC, and MEK, but is independent of intracellular $Ca^{2+}$.