• Title/Summary/Keyword: Arsenopyrite

Search Result 102, Processing Time 0.022 seconds

Tin, Tungsten Mineralization in Bonghwa-Uljin Area (봉화(奉化)-울진지역(蔚珍地域)의 석(錫), 중석광화작용(重石鑛化作用))

  • Park, Hee-In;Lee, Sang Man
    • Economic and Environmental Geology
    • /
    • v.17 no.1
    • /
    • pp.1-15
    • /
    • 1984
  • The tin and tungsten deposits are embedded around the age unknown Buncheon granite gneiss which intruded the Precambrian schists, gneiss and amphibolites in Bonghwa-Uljin area. Pegmatite dike swarm developed intermittently about 4km along the southern border of Buncheon granite gneiss at Wangpiri area. Thickness of pegmatite dikes range from 0.5 to 15m. Pegmetite is consisted of quartz, microcline, albite, muscovite and frequently topaz, tourmaline, garnet, fluorite, fluorapatite and lepidolite. Pegmatite dikes are greisenized, albitized and microclinized along dike walls. Cassiterites are irregularly disseminated through the intensely greienized and albitized parts of the pegmatite. Cassiterite crystals are mainly black to dark brown and contain considerable Ta and Nb. Average Ta and Nb contents of the four cassiterite samples are 5300 and 3400 ppm. The Ssangjeon tungsten deposits is embedded within the pegmatite dike developed along the northern contact of Buncheon granite gneiss with amphibolite. This pegmatite developed 2km along the strike and thickness varies from 10 to 40m. Mineral constituents of the pegmatite are quartz, microcline, plagioclase, muscovite, biotite, tourmaline and garnet. Ore minerals are ferberite and scheelite with minor amount of molybdenite, arsenopyrite, pyrrhotite, pyrite, chalcopyrite, sphalerite, galena, pentlandite, bismuthinite, marcasite, and fluorite. Color and occurrence of quartz reveals that quartz formed at three different stages; quartz I, the earliest milky white quartz formed as a rock forming mineral of simple pegmatite; quartz II, gray to dark gray quartz which replace the minerals associated with quartz I; quartz III, the latest white translucent quartz which replace the quartz I and H. All of the ore minerals are precipitated during the quartz II stage. Fluid inclusion in quartz I and II are mainly gaseous inclusions and liquid inclusions are contained in quartz III and fluorite. Salinities of the inclusion in quartz I and II ranges from 4.5 to 9.5 wt. % and 5.1 to 6.0 wi. % equivalent NaCl respectively. Salinities of the inclusion in fluorite range from 3.5 to 8.3 wt. % equivalent NaCl. Homogenization temperatures of the inclusion in quartz I, II and III range from 415 to $465^{\circ}C$, from 397 to $441^{\circ}C$ and 278 to $357^{\circ}C$. Data gathered in this study reveals that tin and tungsten mineralization in this area are one of prolonged event after the pegmatite formation around Buncheon granite gneiss.

  • PDF

Occurrence and Genetic Environments of Quartz Veins from the Jukwangri area, Hwawon-myeon, Jeollanamdo, Republic of Korea (전남 화원면 주광리일대 석영맥의 산상 및 생성환경)

  • Yoo, Bong-Chul;Lee, Hyun-Koo;Choi, Dong-Ho
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.653-662
    • /
    • 2006
  • Quartz veins from the Jukwangri area of Hwawon-myeon are epithermal quartz veins that are filling the NW or NE-trending faults within Precambrian metasedimentary rocks. Based on their prolongation and ore grades, No. 1 quartz vein can be traced for about 200 m and varies 0.1 to 3 m in thickness. Mineralization of No. 1 quartz vein can be divided into hypogene and supergene stages. Hypogene stage is associated with hydrothermal alteration minerals(phyllic and argillic zones) such as illite, sericite and sulfides such as pyrite, arsenopyrite, sphalerite. chalcopyrite, galena, argentian tetrahedrite. Supergene stage is composed of Fe-Mn oxide, Zn-Fe oxide and Pb oxide. Fluid inclusion data indicate that homogenization temperature and salinity of hypogene stage range from 187 to $306^{\circ}C$ and ken 0.0 to 6.2 wt.% eq. NaCl, respectively. They suggest that ore forming fluids were progressively cooled and diluted from mixing with meteoric water. Oxygen($-4.1{\sim}4.1%o$) and hydrogen($-107{\sim}-88%o$) isotope com-positions indicated that hydrothermal fluids were derived from meteoric and evolved by progressive mixing with meteoric water during mineralization.

Geochemical Characteristics of Soils and Sediments at the Narim Mine Drainage, Korea: Dispersion, Enrichment and Origin of Heavy Metals (나림광산 수계의 토양과 퇴적물에 관한 지구화학적 특성: 중금속 원소의 분산, 부화 및 기원)

  • Lee, Chan Hee;Lee, Hyun Koo;Lee, Jong Chang
    • Economic and Environmental Geology
    • /
    • v.31 no.4
    • /
    • pp.297-310
    • /
    • 1998
  • Geochemical characteristics of environmental toxic elements at the Narim mine area were investigated on the basis of major, minor, rare earth element geochemistry and mineralogy. Ratios of $Al_2O_3/Na_2O$ and $K_2O/Na_2O$ in soils and sediments range from 11.57 to 22.21 and from 1.86 to 3.93, and are partly negative and positive correlation against $SiO_2/Al_2O_3$ (3.41 to 4.78), respectively. These suggested that sediment source of host granitic gneiss could be due to rocks of high grade metamorphism originated by sedimentary rocks. Characteristics of some trace and rare earth elements of V/Ni (0.33 to 1.95), Ni/Co (2.00 to 6.50), Zr/Hf (11.27 to 53.10), La/Ce (0.44 to 0.55), Th/Yb (4.07 to 7.14), La/Th (2.35 to 3.93), $La_N/Yb_N$ (6.58 to 13.67), Co/Th (0.63 to 2.68), La/Sc (3.29 to 5.94) and Sc/Th (0.49 to 1.00) are revealed a narrow range and homogeneous compositions may be explained by simple source lithology. Major elements in all samples are enriched $Al_2O_3$, MgO, $TiO_2$ and LOI, especially $Fe_2O_3$ (mean=7.36 wt.%) in sediments than the composition of host granitic gneiss. The average enrichment indices of major and rare earth elements from the mining drainage are 2.05 and 2.91 of the sediments and are 2.02 and 2.60 of the soils, normalizing by composition of host granitic gneiss, respectively. Average composition (ppm) of minor and/or environmental toxic elements in sediments and soils are Ag=14 and 1, As=199 and 14, Cd=22 and 1, Cu=215 and 42, Pb=1770 and 65, Sb=18 and 3, Zn=3333 and 170, respectively, and extremely high concentrations are found in the subsurface sediments near the ore dump. Environmental toxic elements were strongly enriched in all samples, especially As, Cd, Cu, Pb, Sb and Zn. The level of enrichment was very severe in mining drainage sediments, while it was not so great in the soils. Based on the EPA value, enrichment index of toxic elements is 8.63 of mining drainage sediments and 0.54 of soils on the mining drainage. Mineral composition of soils and sediments near the mining area were partly variable being composed of quartz, mica, feldspar, amphibole, chlorite and clay minerals. From the gravity separated mineralogy, soils and sediments are composed of some pyrite, arsenopyrite, chalcopyrite, sphalerite, galena, goethite and various hydroxide minerals.

  • PDF

Element Dispersion by the Wallrock Alteration of Janggun Lead-Zinc-Silver Deposit (장군 연-아연-은 광상의 모암변질에 따른 원소분산)

  • Yoo, Bong Chul
    • Economic and Environmental Geology
    • /
    • v.45 no.6
    • /
    • pp.623-641
    • /
    • 2012
  • The Janggun lead-zinc-silver deposit is hydrothermal-metasomatic deposit. We have sampled wallrock, hydrother-maly-altered rock and lead-zinc-silver ore vein to study the element dispersion during wallrock alteration. The hydrothermal alteration that is remarkably recognized at this deposit consists of rhodochrositization and dolomitization. Wallrock is dolomite and limestone that consisit of calcite, dolomite, quartz, phlogopite and biotite. Rhodochrosite zone occurs near lead-zinc-silver ore vein and include mainly rhodochrosite with amounts of calcite, dolomite, kutnahorite, arsenopyrite, pyrite, chalcopyrite, sphalerite, galena and stannite. Dolomite zone occurs far from lead-zinc-silver ore vein and is composed of mainly dolomite and minor calcite, rhodochrosite, pyrite, sphalerite, chalcopyrite, galena and stannite. The correlation coefficients among major, trace and rare earth elements during wallrock alteration show high positive correlations(dolomite and limestone = $Fe_2O_3(T)$/MnO, Ga/MnO and Rb/MnO), high negative correlations(dolomite = MgO/MnO, CaO/MnO, $CO_2$/MnO, Sr/MnO; limestone = CaO/MnO, Sr/MnO). Remarkable gain elements during wallrock alteration are $Fe_2O_3(T)$, MnO, As, Au, Cd, Cu, Ga, Pb, Rb, Sb, Sc, Sn and Zn. Remarkable loss elements are CaO, $CO_2$, MgO and Sr. Therefore, elements(CaO, $CO_2$, $Fe_2O_3(T)$, MgO, MnO, Ga, Pb, Rb, Sb, Sn, Sr and Zn) represent a potential tools for exploration in hydrothermal-metasomatic lead-zinc-silver deposits.

Mineralogy and Geochmistry of the Sanjeon Au-Ag Deposit, Wonju Area, Korea (산전 금-은 광상에 관한 광물 및 지화학적 연구)

  • Se-Hyun Kim
    • Economic and Environmental Geology
    • /
    • v.32 no.5
    • /
    • pp.445-454
    • /
    • 1999
  • The Sanjeon Au-Ag deposit consists of three subparallel hydrothermal quartz-calcite veins which filled fault-related fractures (generally $N20^{\circ}$ to 35"W-trending and $70^{\circ}$ to $80^{\circ}$ SW-dipping) within quartz porphyry. The vein mineralization shows an apparent variation of mineral assemblages with paragenetic time: (1) early, white quartz + pyrite + arsenopyrite + brown sphalerite, (2) middle, white (vein) to clear quartz (vug) + base-metal sulfides + electrum + argentite, (3) late, calcite + pyrite + native silver. Mineralogic and fluid inclusion data indicate that gold-silver minerals were deposited at temperatures from 2l $0^{\circ}$ to $250^{\circ}$ with salinities of 4 to 5 wt. % equiv. NaCl and log fS2 values from -14.0 to -12.2 atm. The linear relationship between homogenization temperature and salinity data indicates that gold-silver deposition was a result of meteoric water mixing. Ore mineralization occurred at pressure conditions of about 70 bars, which corresponds to the mineralization depths of about 260 m to 700 m. There is a remarkable decrease of the calculated 1)180 values of water from 1.3 to -9.7%0 in hydrothermal fluid with increasing paragenetic time. This indicates a progressive increase of meteoric water influx in the hydrothermal system at the Sanjeon deposit. Oxygen-hydrogen, sulfur, and carbon isotope values of hydrothermal fluids indicate that the ore mineralization was formed largely from meteoric waters with the contribution of sulfur and carbon from a deep igneous source.

  • PDF

The Primary Structure Controlled Mineralization in Weolseong Diatreme, Southern Korea (월성(月城) 다이아튜림의 층준(層準)에 따른 광화(鑛化) 현상(現狀))

  • Park, Ki-Hwa;Oh, Mihn-Soo
    • Economic and Environmental Geology
    • /
    • v.20 no.1
    • /
    • pp.19-34
    • /
    • 1987
  • The Nokdong As-Zn deposit, located 28 km south of Kyeongju City, Southern Korea, has been investigated by a deep drilling programme. The mineralized zone is roughly 290m long and 180m wide at surface and is hosted in a pipe diatreme infilled with poor to well bedded felsic volcaniclastics. The diatreme was formed by explosive volcanic activity, of probably early Tertiary age, subsequent hydrothermal alteration and mineralization took place concurrently within stratigraphic layers in diatreme. Coarse volcaniclastics in the center part of the diatreme, together with complex systems of fracturing, acted as pathways for late hydrothermal fluids which caused alteration of volcanic material to sericite, chlorite and carbonate and precipitated ore minerals, quartz and calcite in the voids. Porosity and permeability were key factors in determining which portions of the layered diatreme were mineralized. The lower part of certain layers retained a relatively high porosity and were extensively mineralized. Metallic mineralization, consisting mostly of pyirte, sphalerite and arsenopyrite, is found as disseminations, tuff-breccia filling and veins.

  • PDF

Ore Minerals and Geochemical Environments at the Jinwon Pb-Zn Deposit (진원 연-아연 광상의 광석광물과 생성환경)

  • Cho, Young-Ki;Lee, In-Gyeong;Choi, Sang-Hoon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.337-346
    • /
    • 2006
  • The Jinwon Pb-Zn deposit is located within the Precambrian Youngnam Massif. Ore mineralization at the Jinwon deposit occurred in quartz veins that filled fractures in the Hongjesa granite. Mineral paragenesis can be divided into two stages(stage I and II). Stage I, at which the precipitation of major ore minerals occurred, is further divided into two substages with paragenetic time based on minor fractures and discernible mineral assemblages: substage la is characterized by pyrite, arsenopyrite ($28.4{\sim}30.3$ atomic % As), pyrrhotite, magnetite, chalcopyrite, sphalerite ($13.1{\sim}16.0$ mole % FeS) assemblages; substage $I_a$ is represented by main precipitation of Zn, Pb minerals and is characterized by sphalerite ($15.1{\sim}19.0$ mole % FeS), galena, miargyrite, argentile assemblages. Stage II is economically barren quartz veins. Thermodynamics study is used to estimate changes in chemical conditions of the hydrothermal fluids during stage I mineralization, the main ore deposition period at the Jinwon hydrothermal system. The range of estimated sulfur fugacity ($fs_2$) was from $10^{-7}\;to\;10^{-16}$ atm and oxygen fugacity ($fo_2$) was in the range of $10^{-32.8}{\sim}10^{-38.5} atm$. Carbon dioxide fugacity ($fco_2$) was $<10^{-0.6} atm$.

Hydrothermal Au-Ag Mineralization of the Oknam Mine in the Northern Sobaegsan Massif (북부 소백산 육괴 지역에 부존하는 옥남 광산의 열수 금-은 광화작용)

  • Yun, Seong-Taek;Chi, Se-Jung;So, Chil-Sup;Heo, Chul-Ho
    • Economic and Environmental Geology
    • /
    • v.31 no.5
    • /
    • pp.389-398
    • /
    • 1998
  • The Au-Ag deposit of the Oknam mine occurs as gold-silver-bearing rhodochrosite veins in biotite schist and phyllite of the Precambriam Yulri Group. Five stages of ore deposition are recognized, each showing a definite mineral assemblage. General mineral parageneses in veins (stage III) associated with gold and silver vary inwardly from the vein margin: arsenopyrite + pyrite $\Rightarrow$ sphalerite+chalcopyrite+galena+gold $\Rightarrow$ ga1ena+Ag-bearing minerals. Fluid inclusion data indicate that temperature and salinity of ore fluids overally decreased with time: $345^{\circ}{\sim}240^{\circ}C$ and 3.4~7.8 wt. % NaCl equiv during stage I (quartz vein mineralization), $313^{\circ}{\sim}207^{\circ}C$ and 2.3~8.7 wt.% NaCl equiv during manganese-bearing carbonate stages (II and III), and $328^{\circ}{\sim}213^{\circ}C$ and 3.6-5.4 wt.% NaCl equiv during stage IV (quartz vein mineralization). The ore fluids probably evolved through repeated pulses of boiling and later mixing with cooler and more dilute meteoric waters. Fluid inclusion data and geologic arguments indicate that pressures during the mineralization were in the range of 90 to 340 bars. Gold occurs as silver-rich electrums (21 to 29 atom. % Au) and was deposited at temperatures between $300^{\circ}$ and $240^{\circ}C$. Thermochemical calculations suggest that gold was deposited as a combined result of increase in pH and decreases in temperature, $fs_2$ and $fo_2$.

  • PDF

Gold-Silver Mineralization in the Kwangyang-Seungju Area (광양-승주지역 금은광상의 광화작용)

  • Lee, Chang Shin;Kim, Yong Jun;Park, Cheon Yong;Ko, Chin Surk
    • Economic and Environmental Geology
    • /
    • v.26 no.2
    • /
    • pp.145-154
    • /
    • 1993
  • Gold-silver deposits in the Kwangyang-Seungju area are emplaced along $N4^{\circ}{\sim}10^{\circ}W$ to $N40^{\circ}{\sim}60^{\circ}W$ trending fissures and fault in Pre-cambrian Jirisan gneiss complex or Cretaceous diorite. Mineral constituents of the ore from above deposits are composed mainly of pyrite, arsenopyrite, pyrrhotite, magnetite, sphalerite, chalcopyrite, galena and minor amount of electrum, tetrahedrite, miargyrite, stannite, covellite and goethite. The gangue minerals are predominantly quartz and calcite. Gold minerals consist mostly of electrum with a 56.19~79.24 wt% Au and closely associated with pyrite, chalcopyrite, miargyrite and galena. K-Ar analysis of the altered sericite from the Beonjeong mine yielded a date of $94.2{\pm}2.4\;Ma$ (Lee, 1992). This indicates a likely genetic tie between ore mineralization and intrusion of the middle Cretaceous diorite ($108{\pm}4\;Ma$). The ${\delta}^{34}S$ values ranged from +1.0 to 8.3‰ with an average of +4.4‰ suggest that the sulfur in the sulfides may be magmatic origin. The temperatures of mineralization by the sulfur isotopic composition with coexisting pyrite-galena and pyrite-chalcopyrite from Beonjeong and Jeungheung mines were $343^{\circ}C$ and $375^{\circ}C$ respectively. This temperature is in reasonable agreement with the homogenization temperature of primary fluid inclusion quartz ($330^{\circ}C$ to $390^{\circ}C$; Park.1989). Four samples of quartz from ore veins have ${\delta}^{18}O$ values of +6.9~+10.6‰ (mean=8.9‰) and three whole rock samples have ${\delta}^{18}O$ values of +7.4~+10.2‰ with an average of 7.4‰. These values are similar with those of the Cretaceous Bulgugsa granite in South Korea (mean=8.3‰; Kim et al. 1991). The calculated ${\delta}^{18}O_{water}$ in the ore-forming fluid using fractionation factors of Bulgugsa et al. (1973) range from -1.3 to -2.3‰. These values suggest that the fluid was dominated by progressive meteoric water inundation through mineralization.

  • PDF

Element Dispersion by the Wallrock Alteration of Daehyun Gold-silver Deposit (대현 금-은광상의 모암변질에 따른 원소분산)

  • Yoo, Bong Chul
    • Economic and Environmental Geology
    • /
    • v.46 no.2
    • /
    • pp.199-206
    • /
    • 2013
  • The Daehyun gold-silver deposit consists of two hydrothermal quartz veins that fill NE-trending fractures in the Cambro-Ordovician calcitic marble. I have sampled wallrock, hydrothermaly-altered rock and gold-silver ore vein to study the element dispersion and element gain/loss during wallrock alteration. The hydrothermal alteration doesn't remarkably recognized at this deposit and consists of mainly calcite, dolomite, quartz and minor epidote. The ore minerals composed of arsenopyrite, pyrrhotite, pyrite, sphalerite, stannite, chalcopyrite, galena, electrum, native bismuth and silver-bearing mineral. Based on analyzed data, the chemical composition of wallrock consists of mainly $SiO_2$, CaO, $CO_2$ with amounts of $Al_2O_3$, $Fe_2O_3(T)$ and MgO. The contents of $SiO_2$, $Fe_2O_3(T)$, MgO, CaO and $CO_2$ vary significantly with distance from ore vein. The element dispersion doesn't remarkably recognized during wallrock alteration and only occurs near the ore vein margin because of physical and chemical properties of wallrock. Remarkable gain elements during wallrock alteration are $Fe_2O_3(T)$, total S, Ag, As, Bi, Cd, Cu, Ni, Pb, Sb, Sn, W and Zn. Remarkable loss elements are $SiO_2$, MnO, MgO, CaO. $CO_2$ and Sr. Therefore, Our result may be used when geochemical exploration carry out at deposits hosted calcitic marble in the Hwanggangri metallogenic district.