Occurrence and Genetic Environments of Quartz Veins from the Jukwangri area, Hwawon-myeon, Jeollanamdo, Republic of Korea

전남 화원면 주광리일대 석영맥의 산상 및 생성환경

  • Yoo, Bong-Chul (Department of geology and environmental Sciences, Chungnam National University) ;
  • Lee, Hyun-Koo (Department of geology and environmental Sciences, Chungnam National University) ;
  • Choi, Dong-Ho (Korea Resources Corporation)
  • Published : 2006.12.30

Abstract

Quartz veins from the Jukwangri area of Hwawon-myeon are epithermal quartz veins that are filling the NW or NE-trending faults within Precambrian metasedimentary rocks. Based on their prolongation and ore grades, No. 1 quartz vein can be traced for about 200 m and varies 0.1 to 3 m in thickness. Mineralization of No. 1 quartz vein can be divided into hypogene and supergene stages. Hypogene stage is associated with hydrothermal alteration minerals(phyllic and argillic zones) such as illite, sericite and sulfides such as pyrite, arsenopyrite, sphalerite. chalcopyrite, galena, argentian tetrahedrite. Supergene stage is composed of Fe-Mn oxide, Zn-Fe oxide and Pb oxide. Fluid inclusion data indicate that homogenization temperature and salinity of hypogene stage range from 187 to $306^{\circ}C$ and ken 0.0 to 6.2 wt.% eq. NaCl, respectively. They suggest that ore forming fluids were progressively cooled and diluted from mixing with meteoric water. Oxygen($-4.1{\sim}4.1%o$) and hydrogen($-107{\sim}-88%o$) isotope com-positions indicated that hydrothermal fluids were derived from meteoric and evolved by progressive mixing with meteoric water during mineralization.

화원면 주광리 일대의 석영맥은 선캠브리아기의 변성퇴적암류 내에 발달된 NW 또는 NE방향의 단층대를 충진한 천열수성 석영맥이다. 이들 석영맥의 연장성과 품위를 기초로, 1호 석영맥은 연장성이 200 m이며 폭은 0.1에서 3 m 정도이다. 1호 석영맥의 광화작용은 심성시기와 천성시기로 구분된다. 심성시기는 일라이트, 견운모를 수반하는 필릭대와 점토대로 구성되며 황화광물은 황철석, 유비철석, 섬아연석, 황동석, 방연석 및 함은사면동석 등이 관찰된다 천성시기는 철-망간 산화광물, 아연-철 산화광물 및 연 산화광물 등이 관찰된다. 유체포유물 자료에 의하면, 심성시기의 균일화온도와 염농도는 각각 $187{\sim}306^{\circ}C,\;0.0{\sim}6.2wt.%$로써 광화유체가 계속적인 순환수의 유입에 의한 혼입에 의해 냉각 및 희석작용이 있었음을 시사한다. 산소($-4.1{\sim}4.1%o$), 수소($-107{\sim}-88%o$)동위원소 값을 볼 때 광화유체는 순환수 기윈의 유체가 주종을 이룬 것으로 보이며 광화작용이 진행됨에 따라 계속적인 순환수의 혼입이 크게 작용한 것으로 해석할 수 있다.

Keywords

References

  1. 김규한,中井信之 (1988) 남한의 지하수 및 강수의 안정동위원소조성. 지질학회지,24권, p. 37-46
  2. 김창성,최선규,유인창,김상엽,유봉철,이현구 (2005) 해남지역 은산 및 모이산 천열수 금 은광상의 유체진화. 2005년도 대한자원환경지질학회 춘계학술발표회, p.86-89
  3. 대한광업진흥공사 (2004) 목포지구 물리탐사보고서, 18p
  4. 유봉철,오진용,강흥석,이현구 (2006) 전남 화원일대의 석영맥에서 산출되는 광석광물과 이의 생성환경. 자원 환경지질,39권, p. 583-595
  5. 임무택,이윤수,강희철,김주용,박인화 (2001) 해남지역의 백악기 암석에 대한 고지자기 연구. 자원환경지질,34권,p. 119-131
  6. 차문성,윤성효 (1988) 한반도의 화산물함몰구조 및 환상복 합암체에 관한 연구. 지질학회지, v. 24, P. 67-86
  7. Bodnar, R.J. (1983) A method of calculating fluid inclusion volumes based on vapor bubble diameters and P-V-T-X properties of inclusion fluids. Economic Geology, v. 78, p. 535-542 https://doi.org/10.2113/gsecongeo.78.3.535
  8. Bodnar, R.J. and Vityk, M.O. (1994) Interpretation of microthermometric data for $H_{2}O$-NaCI fluid inclusions: in De Vivo, B. and Frezzotti, M.L. eds., Fluid inclusions in minerals: Method and applications: Short Course International Mineralogical Assoc., p. 117-130
  9. Brown, P.E. (1989) FLINCOR: A microcomputer program for the reduction and investigation of fluid-inclusion data. American Mineralogist, v. 74, p. 1390-1393
  10. Choi, S.G. Ryu, I.C. Pak, S.J. Wee, S.M. Kim, C.S. and Park, M.E. (2005) Cretaceous epithermal gold-silver mineralization and geodynamic environment, Korea. Ore Geology Reviews, v. 26, p. 115-135 https://doi.org/10.1016/j.oregeorev.2004.10.005
  11. Hedenquist,J.W. Arribas, M.A. and Gonzalez, V.E. (2000) Exploration for epithermal gold deposits, in Hagemann, S.G. and Brown, P.E., eds, Gold in 2000. Reviews in Economic Geology, v. 13, p. 245-277
  12. Kim, K.H. and Nakai, N. (1981) A study on hydrogen, oxygen and sulfur isotopic ratios of the hot water in South Korea. Geochemistry, v. 15, p. 6-16
  13. Koh, S.M. and Chang, H.W. (1996) Geological interpretation on the Cretaceous strata in the Haenam area, Chollannamdo, Korea. Economic and Environmental Geology, v. 29, p, 381-393
  14. Matsuhisa, Y. Goldsmith, R. and Clayton, R.N. (1979) Oxygen isotope fractionation in the system quartzaIbite-anorthite-water. Geochimica et Cosmochimica Acta, v. 43, p. 1131-1140 https://doi.org/10.1016/0016-7037(79)90099-1
  15. So, C.S. Chi, S,J. Yu, J.S. and Shelton, KL. (1987) The Jeonui gold-silver mine, Republic of Korea: A geochemical study. Mining Geology, v. 37, p. 313-322
  16. So, C.S. and Shelton, K.L. (1987a) Stable isotope and fluid inclusion studies of gold and silver-bearing hydrothermal vein deposits, Cheonan-CheongyangNonsan mining district, Republic of Korea: Cheonan area. Economic Geology, v. 82, p. 987-1000 https://doi.org/10.2113/gsecongeo.82.4.987
  17. So, C.S. and Shelton, K.L. (1987b) Fluid inclusion and stable isotope studies of gold-silver-bearing hydrothermal vein deposits, Yeoju mining district, Republic of Korea. Economic Geology, v. 82, p. 1309-1318 https://doi.org/10.2113/gsecongeo.82.5.1309