• Title/Summary/Keyword: Arsenic contaminated fine soil

Search Result 7, Processing Time 0.02 seconds

Evaluation of Electrokinetic Remediation of Arsenic Contaminated Soils

  • Kim, Won-Seok;Kim, Soon-Oh;Kim, Kyoung-Woong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.72-75
    • /
    • 2004
  • The potential of electrokinetic (EK) technology has been successfully demonstrated for the remediation of heavy metal contaminated fine-grained soils through laboratory scale and field application studies. Arsenic contamination in soil is a serious problem affecting both site use and groundwater quality. The EK technology was evaluated for the removal of arsenic from two soil samples: kaolinite clay artificially contaminated with arsenic and arsenic-bearing tailing soil taken from the Myungbong (MB) mining area. The effect of cathodic electrolyte on the process was investigated using three different types of electrolyte: deionized water (DIW), potassium phosphate (KH$_2$PO$_4$) and sodium hydroxide (NaOH). The result of experiments on the kaolinite clay shows that the potassium phosphate was most effective in extracting arsenic, probably resulting from anion exchange of arsenic species by phosphate. On the contrary, the sodium hydroxide seemed to be most efficient in removing arsenic from the tailing soil, and it is explained by the fact that sodium hydroxide increased the soil pH and accelerated ionic migration of arsenic species through increase in desorption and dissolution of arsenic species into pore water.

  • PDF

Immobilization and Recycling of Arsenic-Contaminated Fine Soil Cake Produced after Soil Washing Process (토양세척 후 발생하는 비소오염 탈수미세토의 불용화 및 재활용 평가)

  • Oh, Minah;Moon, SoYoung;Hyun, Min;Chae, HeeHoon;Lee, Jai-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.4
    • /
    • pp.9-16
    • /
    • 2012
  • Standardized remediation process for the soil contaminated with arsenic is insufficient due to characteristics of its anion-mobility and speciation changed by Eh-pH of soil. One of the well-known efficient remediation processes is the modified soil washing that particle separation process by only water. However, it is required that the treatment plan for the fine soil what was discharged after modified soil washing. Therefore, this research suggests the treatment plan that the recycling method using arsenic immobilization by FeS-$H_2O_2$. The batch experiments results for the arsenic immobilization showed that the water content was at least 50%, the injection of FeS and $H_2O_2$ (assay-35%) were 8% (w/watdrybase) and 0.2 mL/10 g of fine soil respectively. Arsenic concentration with KSLT was decreased about 95.4%. The results indicated that the mixing of FeS-$H_2O_2$ was highly efficient on the immobilization of As-contaminated soil. The mixing ratio as 13% of bentonite with 3% of cement (at based on 100% of immobilized fine soil) was satisfied with standard of liner for landfill construction.

Effects of Contamination Source and Particle Size on Arsenic Speciation and Bioaccessibility in Soils (오염원에 따른 토양 입경 별 비소의 오염특성 및 생물학적 접근성 평가)

  • Kwon, Ye-Seul;Kim, Eun Jung
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.5
    • /
    • pp.89-97
    • /
    • 2017
  • In this study, we evaluated effect of particle size on arsenic solid-state speciation and bioaccessibility in soils highly contaminated with arsenic from smelting and mining. Soils were partitioned into six particle size fractions ($2000-500{\mu}m$, $500-250{\mu}m$, $250-150{\mu}m$, $150-75{\mu}m$, $75-38{\mu}m$, <$38{\mu}m$), and arsenic solid-state speciation and bioaccessibility were characterized in each particle size fraction. Arsenic solid-state speciation was characterized via sequential extraction and XRD analysis, and arsenic bioaccessibility was evaluated by SBRC (Solubility Bioaccessibility Research Consortium) method. In smelter site soil, arsenic was mainly present as arsenic bound to amorphous iron oxides. Fine particle size fractions showed higher arsenic concentration, but lower arsenic bioaccessibility. On the other hand, arsenic in mine site soil showed highest concentration in largest particle size fraction ($2000-500{\mu}m$), while higher bioaccessibility was observed in smaller particle size fractions. Arsenic in mine site soil was mainly present as arsenolite ($As_2O_3$) phase, which seemed to affect the distribution of arsenic and arsenic bioaccessibility in different particle size fractions of the mine soil.

비소 및 중금속 오염 토양의 파일럿 토양 세척 연구

  • 고일원;이광표;이철효;김경웅
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.239-242
    • /
    • 2004
  • Pilot-scale soil washing facility was developed and operation condition was determined in order to remediate a soil contaminated with As, Ni and Zn. Soil washing facility is composed of soil particle separation, soil washing and wastewater treatment process. Both oxyanionic As and cationic Ni and Zn were effciently removed using HCl rather 0than H$_2$SO$_4$ and H$_2$PO$_4$. This is why oxyanion and cation metals can be extracted simultaneously from the contaminated soil in acidic solution. Further, the contaminated soils include calcite and then demand much acidity, that is consumption of acid solution. Fine particles are enriched with contaminants, and coarse particles are removed effectively rather than fine particles. As, Ni and Zn are strongly associated with minerals, and then the residence time should be increased for a reaction with washing solution.

  • PDF

Removal of As, Cadmium and Lead in Sandy Soil with Sonification-Electrokinetic Remediation (초음파동전기기법을 이용한 비소, 카드뮴, 납으로 오염된 사질토 정화 연구)

  • Oh, SeungJin;Oh, Minah;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.7
    • /
    • pp.1-11
    • /
    • 2013
  • The actively soil pollution by the toxic heavy-metals like the arsenic, cadmium, lead due to the industrialization and economic activity. The uses the electrokinetic remediation of contaminated soil has many researches against the fine soil having a small size in the on going. However, it is the actual condition which the research result that is not effective due to the low surface charge of the particle and high permeability shows in the electrokinetic remediation in comparison with the fine soil in the case of the sandy soil in which the particle size is large. In this research, the electrokinetic remediation and ultrasonic wave fetch strategy is compound applied against the sandy soil polluted by the arsenic, cadmium, and lead removal efficiency of the sandy soil through the comparison with the existing electrokinetic remediation tries to be evaluated. First of all, desorption of contaminants in soil by ultrasonic extraction in the Pre-Test conducted to see desorption effective 5~15%. After that, By conducted Batch-Test results frequency output century 200 Khz, reaction time 30 min, contaminated soil used in experiment was 500 g. Removal efficiency of arsenic, cadmium, lead are 25.55%, 8.01%, 34.90%. But, As, Cd, Pb remediation efficiency less than 1% in EK1(control group).

Remediation of Soils Contaminated with Arsenic and heavy Metals by Soil Washing (토양세척에 의한 비소 및 중금속 오염토양의 복원)

  • Ko Ilwon;Lee Cheol-Hyo;Lee Kwang-Pyo;Kim Kyoung-Woong
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.4
    • /
    • pp.52-61
    • /
    • 2004
  • In order to remediate soils contaminated with oxyanionic As and cationic Zn and Ni through the pilot-scale acid washing, the effectiveness of acid washing and the properties of contaminated soils, fine soil particle and dissolved contaminants were evaluated. $H_{2}SO_4\;and\;H_{3}PO_4$ washing at pH $2{\sim}3$ enhanced the removal of As by the presence of competitive oxyanions and HCl washing effectively removed simultaneously As, Zn and Ni. The effectiveness of soil washing was little enhanced above the critical reaction time, and the carbonate, Fe/Mn oxide and organic/sulfides associated fraction were dominantly removed. The washing of coarse soil particles was highly efficient, but that of fine soil particles($<74{\mu}m$) was recalcitrant due to the enrichment with contaminants. Moreover, the physical separation of fine particles($<149{\mu}m$) enhanced the overall efficiency of soil washing. Therefore, both chemical extraction and separation of fine soil particles showed the high effectiveness of soil washing in the intersection point to minimize the amount of fine soil particles and to maximize the chemical extraction of contaminants.

Heavy Metals Uptake Capability and Growth of Fifteen Compositae Plants for Phytoremediation (식물환경복원 소재선발을 위한 국화과 15종의 생육 및 중금속 축적능 분석)

  • Kwon, Hyuk Joon;Lee, Cheol Hee;Kim, Soo-Young
    • Korean Journal of Plant Resources
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • This study was performed to select the effective plant for phytoremediation of heavy metal contaminated areas. After cultivation of fifteen Compositae plants on soil contaminated with heavy metals for 8 weeks, the growth response and accumulation ability of each parts for heavy metal, such as arsenic, cadmium, copper, lead, and zinc were analyzed. Except Adiantum capillus-veneris, growth of Aster incisus, Coreopsis drumondii), Dendranthema indicum, Saussurea pulchella were relatively fine. Arsenic accumulation ability was the highest by Artemisia gmelini ($25.52mg{\cdot}kg^{-1}$ DW) in underground part, and D. sichotense ($3.35mg{\cdot}kg^{-1}$) in aerial part. Cadmium was the highest by Aster magnus ($2.50mg{\cdot}kg^{-1}$) in aerial part. Aerial and underground part of S. pulchella showed the highest copper accumulation (24.29, $99.92mg{\cdot}kg^{-1}$). In lead, 1.43 (A. magnus)${\sim}5.00mg{\cdot}kg^{-1}$ (S. deltoides) were accumulated in aerial part among fifteen Compositae plants. Aster hayatae ($140.09mg{\cdot}kg^{-1}$), Aster yomena ($109.07mg{\cdot}kg^{-1}$), A. magnus ($100.21mg{\cdot}kg^{-1}$) are absorbed more than $100mg{\cdot}kg^{-1}$ of Zinc. Therefore, they are considered to be phytoremediation material of zinc contaminated areas.