• Title/Summary/Keyword: Arrays

Search Result 2,107, Processing Time 0.033 seconds

A Study on the optical logic gate using LED array (LED 배열을 이용한 광논리 게이트에 관한 연구)

  • 권원현;박한규
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1984.10a
    • /
    • pp.25-27
    • /
    • 1984
  • Using LED sources, the system that performs optical logic function of the input data arrays will be presented. Sixteen possible functions of two binary data arrays, such as AND, OR, NOR and XOR are simply obtained in parallel by controlling LED switching mode. Experimental result and some examples of application will be given.

  • PDF

Portable Low-Cost MRI System Based on Permanent Magnets/Magnet Arrays

  • Huang, Shaoying;Ren, Zhi Hua;Obruchkov, Sergei;Gong, JIa;Dykstra, Robin;Yu, Wenwei
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.3
    • /
    • pp.179-201
    • /
    • 2019
  • Portable low-cost magnetic resonance imaging (MRI) systems have the potential to enable "point-of-care" and timely MRI diagnosis, and to make this imaging modality available to routine scans and to people in underdeveloped countries and areas. With simplicity, no maintenance, no power consumption, and low cost, permanent magnets/magnet arrays/magnet assemblies are attractive to be used as a source of static magnetic field to realize the portability and to lower the cost for an MRI scanner. However, when taking the canonical Fourier imaging approach and using linear gradient fields, homogeneous fields are required in a scanner, resulting in the facts that either a bulky magnet/magnet array is needed, or the imaging volume is too small to image an organ if the magnet/magnet array is scaled down to a portable size. Recently, with the progress on image reconstruction based on non-linear gradient field, static field patterns without spatial linearity can be used as spatial encoding magnetic fields (SEMs) to encode MRI signals for imaging. As a result, the requirements for the homogeneity of the static field can be relaxed, which allows permanent magnets/magnet arrays with reduced sizes, reduced weight to image a bigger volume covering organs such as a head. It offers opportunities of constructing a truly portable low-cost MRI scanner. For this exciting potential application, permanent magnets/magnet arrays have attracted increased attention recently. A magnet/magnet array is strongly associated with the imaging volume of an MRI scanner, image reconstruction methods, and RF excitation and RF coils, etc. through field patterns and field homogeneity. This paper offers a review of permanent magnets and magnet arrays of different kinds, especially those that can be used for spatial encoding towards the development of a portable and low-cost MRI system. It is aimed to familiarize the readers with relevant knowledge, literature, and the latest updates of the development on permanent magnets and magnet arrays for MRI. Perspectives on and challenges of using a permanent magnet/magnet array to supply a patterned static magnetic field, which does not have spatial linearity nor high field homogeneity, for image reconstruction in a portable setup are discussed.

Photovoltaic An-ay Modeling For MPPT Using PSPICE (최대전력제어를 위한 PSPICE의 태양광 어레이 모델링)

  • Yu, Gwon-Jong;Jung, Myung-Wong;Kang, Gi-Hwan;Song, Jin-Soo;No, Myong-Gun;Sung, Se-Jin;Hong, Sung-Min;Choe, Gyu-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.540-542
    • /
    • 1996
  • A detailed model of a photo voltaic array written in PSPlCE is presented in this paper. It is likely that solar cell arrays in photovoltaic system is shadowed partly by clouds, buildings. By the effects of partial shadowing, not only the output power of solar cell arrays is decreased, but also shadowed cells are reversely biased and damaged in some cases. In this paper, by analyzing the output characteristics of solar cell arrays according to various shadow patterns, we investigate solar cell arrays connection of prevention the shadowing effects to the utmost.

  • PDF

Vibration Analysis in Reinforced Concrete Slab Using Tables of Orthogonal Arrays (직교배열표을 활용한 슬래브 구조체의 진동 해석)

  • Seo, Sang-Ho;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.372-378
    • /
    • 2005
  • Finite element analysis of concrete slab system in apartment building was executed using the tables of orthogonal arrays, and optimal design process was proposed. At first, experimental results show that sound peak components to influence the overall level and the rating of floor impact sound insulation were coincident with natural frequencies of the reinforced concrete slab. Finite element model of concrete slab was compared with experimental results, and well corresponded with an error of less than 10%. The tables of orthogonal arrays were used for finite element analysis with 8 factors. 3 related to material properties and 5 related to slab shape parameters and its results were analyzed by statistical method, ANOVA. The most effective factor among them was slab thickness, and main effect factor from slab shape parameters was different from each natural frequency. The interaction was found in the higher mode over $3^{rd}$ natural frequency. From main effect plot and interaction plot, the optimal design factor to increase the natural frequency was determined.

  • PDF

Color Tunable Nanostructures by Polarization Control for Display Applications

  • Cho, Eun-Byurl;Ko, Yeong-Il;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.567-567
    • /
    • 2013
  • Surface plasmon resonance is the enhancement of electromagnetic wave caused by oscillation on the metal and dielectric interfaces. Surface plasmons with nanohole arrays provides an enhancedresonance for the specific wavelengths of interests. Asymmetric array of nanoscale structures can enable orientation dependent shift of resonance wavelengths when combined with the control of polarization for incident visible light, thus providing color tunability. Appropriate lattice constants along the direction of polarization in rectangular nanohole arrays can determine the resonance condition generating red (R), green (G), and blue (B) colors and potentially be applied to display applications. In ourprevious report, we have optimized the ion beam nanomachining conditions to fabricate the nanostructures on the metal film. We apply the fabrication conditions to make nanoscale hole arrays using 100 nm thick gold layer on the glass substrate with the optimal design of periodicities along x, y, and diagonal directions of a=440 nm, b=520 nm, c=682 nm, and the hole diameter of d=200 nm. Using the reflective light in dark field mode of optical microscope, we can observe different colors. When the polarizer is paralleled along a, b, or c direction, the represented color is changed to R, G, and B, respectively. We further map the color using i1 to correlate the conditions of the nanohole arrays with their characteristic color.

  • PDF

Fabrication and Growth Behavior of TiO2 Nanotube Arrays by Anodic Oxidation Method (양극산화법에 의한 TiO2 나노튜브 어레이의 제조와 성장거동)

  • Kim, Seon-Min;Kim, Ki-Won;Ryu, Kwang-Sun;Kim, Yoo-Young;Cho, Kwon-Koo
    • Journal of Powder Materials
    • /
    • v.18 no.1
    • /
    • pp.56-63
    • /
    • 2011
  • Recently, $TiO_2$ nanotubes have considerably researched because of their novel application about photocatalysis, dye-sensitized solar cells (DSSCs), lithium ion battery, etc. In this work, self-standing $TiO_2$ nanotube arrays were fabricated by anodic oxidation method using pure Ti foil as a working electrode in ethylene glycole with 0.3M $NH_4F$ + $2%H_2O$. Growth behavior of $TiO_2$ nanotube arrays was compared according to temperature, voltage and time. The morphology, structure and crystalline of anodized $TiO_2$ nanotube arrays were observed by FE-SEM (field emission scanning electron microscope) and XRD (X-ray diffraction).

Optical Absorption Enhancement for Ultrathin c-Si Solar Cells using Ag Nanoparticle and Nano-hole Arrays (Ag 나노입자와 나노홀 배열구조를 이용한 초박형 단결정 Si 태양전지의 광흡수 증진)

  • Kim, Sujung;Cho, Yunae;Sohn, Ahrum;Kim, Dong-Wook
    • Current Photovoltaic Research
    • /
    • v.4 no.2
    • /
    • pp.64-67
    • /
    • 2016
  • We investigated the influences of Ag nanoparticle (NP) arrays and surface nanohole (NH) patterns on the optical characteristics of 10-${\mu}m$-thick c-Si wafers using finite-difference time-domain (FDTD) simulations. In particular, we comparatively studied the plasmonic effects of both monomer arrays (MA) and heptamer arrays (HA) consisting of identical Ag NPs. HA improved the optical absorption of the c-Si wafers in much wider wavelength range than MA, with the help of hybridized plasmon modes. The light trapping capability of the NH array pattern is superior to that of the Ag plasmonic NPs. We also found that the addition of the Ag HA on the wafers with surface NH patterns further enhanced optical absorption: the expected short-circuit current density was as high as $34.96mA/cm^2$.

Improved Light Output of GaN-Based Light-Emitting Diodes with ZnO Nanorod Arrays (ZnO 나노로드 배열에 의한 GaN기반 광다이오드의 광추출율 향상)

  • Lee, Sam-Dong;Kim, Kyoung-Kook;Park, Jae-Chul;Kim, Sang-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.59-60
    • /
    • 2008
  • GaN-based light-emitting diodes (LEDs) with ZnO nanorod arrays on a planar indium tin oxide (ITO) transparent electrode were demonstrated. ZnO nanorods were grown into aqueous solution at low temperature of $90^{\circ}C$. Under 20 mA current injection, the light output efficiency of the LED with ZnO nanorod arrays on ITO was remarkably increased by about 40 % of magnitude compared to the conventional LED with only planar ITO. The enhancement of light output by the ZnO nanorod arrays is due to the formation of side walls and a rough surface resulting in multiple photon scattering at the LED surface.

  • PDF