• Title/Summary/Keyword: Array compensation

Search Result 139, Processing Time 0.023 seconds

Method for PV Module Mismatch Compensation to Reduce Parallel Mismatch in Solar PV Array (태양광 PV 어레이에서 병렬 부정합을 저감시키는 모듈 부정합 보상기법)

  • Park, Gi-Yob;Ahn, Hee-Wook
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.170-171
    • /
    • 2010
  • The power loss due to PV module mismatch in PV array system is analyzed and a mismatch compensation method is proposed. A dc-dc converter is used to compensate for series mismatch caused by a low current module in a string. The converter is controlled to maximize the array power output. The proposed compensation method was verified by PSpice simulation.

  • PDF

Mutual Coupling Compensation and Direction Finding for Anti-Jamming 3D GPS Antenna Array (항재밍 3차원 GPS 배열 안테나를 위한 Mutual coupling 보상 및 재밍 방향탐지 알고리즘)

  • Kang, Kyusic;Sin, Cheonsig;Kim, Sunwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.723-730
    • /
    • 2017
  • In this paper, we consider an online compensation algorithm considering the mutual coupling and suggest a new GPS antenna array to apply. To evaluate the anti-jamming performance for the proposed antenna array, ULA and URA, we divide direction finding of multiple jamming signals into environments. 1. there is no mutual coupling. 2. there is mutual coupling but no compensation. 3. mutual coupling is compensated. RMSE analysis showed that the online compensation algorithm works and that peak detection is possible for multiple jamming signals.

Study on the Beam Pattern Compensation with Planar Active Phased Array Antenna (평면형 능동위상 배열안테나 빔 패턴 보상에 관한 연구)

  • Chon, Sang-Mi;Na, Hyung-Ki;Ahn, Chang-Soo;Kim, Seon-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.2
    • /
    • pp.217-222
    • /
    • 2014
  • This paper discusses about the beam pattern distortion caused by the failures of some antenna modules in the active array antenna and analyses the possibility of improvement through applying the beam pattern compensation method previously studied. The beam pattern distortion which is mostly represented as an increase of the sidelobe level, can be suppressed through re-synthesizing each module's magnitude and phase. This method was applied to the prototype of active array antenna system, and the results of antenna pattern distortion and compensation were analyzed and measured in the Near Field Chamber. Array failures are generally divided into random TR module failures and TRU(TR Unit: combination of TR modules, Beam Computation module, Power supply module) failures. The results of beam pattern compensation were analyzed in each failure and compared to the results of the simulation. The beam pattern compensation results applied to the real active antenna array system showed the similar to the simulation results. Consequently, it was verified the beam pattern could be compensated with the magnitude and phase adjustment of other normal antenna modules.

Antenna Array Compensation for Improved DOA Estimation (도래각 추정 성능 향상을 위한 배열 안테나 보정 기법)

  • Song, Heemang;Cho, Seunghoon;Lee, Jaeeun;Jeong, Seonghee;Shin, Hyun-Chool
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.786-791
    • /
    • 2015
  • This paper presents a signal processing method for calibrating an antenna array to solve the inaccuracy of Direction of Arrival(DOA). Using reference data quantifying amplitude and phase distortion levels for each angles, we compensate each radar array’s amplitude and phase distortion. The proposed method is applied to the Bartlett, Capon and MUSIC algorithms, Using 77 GHz Frequency Modulated Continuous Wave(FMCW) Long Range Radar(LRR) signal, we experimentally demonstrate the performance improvement after the proposed compensation.

A Compensation Algorithm for Generalized Sidelobe Canceller in the Presence of Faulty Elements (센서 결함이 있는 경우 Generalized Sidelobe Canceller의 보정 알고리즘)

  • 홍우영;김병철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.1
    • /
    • pp.59-66
    • /
    • 1996
  • In this paper, we present a new effective algorithm for element failure compensation of Generalized Sidelobe Canceller (GSC). While the GSC is well formulated, little works have been done on array element compensation in the presence of faulty elements. Element failure changes the problem of a linearly equally spaced array into that of an unequally spaced array. Typical research approaches have been directed at using search techniques to optimize unequally spaced arrays. The proposed algorithm matches the linear constraint conditions and the general shape of the desired beam pattern at the expense of an increase of beam-width in the overall main lobe. Numerical results are included to demonstrate the capability of compensation for various situations.

  • PDF

X-Band Phased Array Antenna Module for the Beam Compensation of an Aircraft Wing Mounted Antenna (항공기 날개 탑재 안테나의 빔 보상을 위한 X-대역 위상 배열 안테나 모듈)

  • Choi, Woo-Yeol;Seo, Jung-Hoon;Kim, Hyun-Ho;Baek, Kun-Woo;Hong, Sung-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.11
    • /
    • pp.978-986
    • /
    • 2016
  • X-band phased array antenna module for the compensation of deformed beam direction by wing deformation is designed and fabricated. The phased array antenna module consists of array antenna, phase shifter, power divider and control circuit. To select out the best component, the variation of radiation pattern by wing bending and phase error of components is simulated. The fabricated phased array antenna module shows an antenna gain of 5.84 dBi, a return loss of 13.6 dB and a bandwidth of 10.6 % at 9.375 GHz. The test bed was set up to verify the performance of beam direction compensation. This test confirmed that the main beam direction of array antenna has been well restored under wing bending of 9 %.

A Technique Combining the Path Calibration and Nonlinear Compensation in a Transmitting Antenna Array System (송신 배열 안테나의 경로 보정과 비선형 보상의 결합 기술)

  • Lim, Sun-Min;Kim, Min;Eun, Chang-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.5
    • /
    • pp.27-36
    • /
    • 2012
  • We propose a new scheme combining the calibration of the path imperfections and the compensation of HPA nonlinearity in the downlink OFDM smart antenna systems. We use a two term third-order polynomial (without second-order term) and the indirect learning architecture for calibration and compensation, to make each path of the antenna array have equal characteristics. We test our scheme with computer simulations. The result shows that, with the addition of only one third-order term, the adverse nonlinear effects as well as the those of linear imperfections can be effectively compensated.

A Technique Combining the Nonlinear Compensation and the Path Calibration by Using the Feedforward Scheme in Transmitting Array Antenna Systems (피드포워드 방식을 이용한 송신 배열 안테나의 비선형 보상과 경로 보정의 결합 기술)

  • Kim, Min;Eun, Chang-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4A
    • /
    • pp.197-204
    • /
    • 2012
  • We propose a new scheme combining the compensation of HPA nonlinearity and the calibration of the path imperfections in the downlink OFDM smart antenna systems. We use a two term third-order polynomial (without second-order term) and the feedforward method for compensation and calibration to make each path of the antenna array have equal characteristics. Since the proposed scheme does not alter the base-band signal, it can be applied to the smart antenna system independently of the base-band signal processing section. The result of computer simulations shows that, with the addition of only one third-order term, the adverse nonlinear effects can be effectively compensated, and the those of linear imperfections can be calibrated as well.

Voltage Equalizing of Solar Modules for Shadowing Compensation

  • Jou, Hurng-Liahng;Wu, Kuen-Der;Wu, Jinn-Chang;Chung, Cheng-Huan;Huang, Ding-Feng
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.514-521
    • /
    • 2017
  • This paper proposes a shadowing compensation method for the solar modules of grid-connected photovoltaic generation systems. The shadowing compensator (SC) implemented by the proposed shadowing compensation method is used only for the solar modules that can be shaded by predictable sources of shading. The proposed SC can simplify both the power circuit and the control circuit as well as improve power efficiency and utilizes a voltage equalizer configured by a modified multi-winding fly-back converter. The proposed SC harvests energy from the entire solar cell array to compensate for the shaded sub-modules of the solar cell array, producing near-identical voltages of all shaded and un-shaded sub-modules in the solar cell array. This setup prevents the formation of multiple peaks in the P-V curve under shaded conditions. Hardware prototypes are developed for the SCs implemented by the conventional and modified multi-winding fly-back converters, and their performance is verified through testing. The experimental results show that both SCs can overcome the multiple peaks in the P-V curve. The proposed SC is superior to the SC implemented by the conventional multi-winding fly-back converter.

A Comparison Characteristics on the Structures of the LED Traffic Signal Lamp Controller for the Domestic Use (국내 LED 교통 신호등용 안정기 구조별 특성 비교)

  • Park, Chong-Yeun;No, Kyung-Ho
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.183-188
    • /
    • 2005
  • Instead of the incandescent lamps the LED lamps have been used on the traffic signal lamp with the advantages of small loss, no lens and long life. In this paper, we have compared three kinds of the LED controller structures and showed the LED array decision methods. We studied the temperature characteristics on LED and the temperature compensation network. The experimental results showed that the electrical characteristics of three kinds of the LED controller structures were different each other. We concluded that the temperature compensation is the important technique, the best compensation network has the ${\pm}10%$ variation for the luminous intensity.

  • PDF