• Title/Summary/Keyword: Array Antenna Beam

Search Result 374, Processing Time 0.147 seconds

A Study on Excitation Error Estimation for Active Phased Array Antenna (능동위상배열안테나의 급전신호 오차 추정에 관한 연구)

  • Jung, Hyeon-Jong;Jung, Jin-Woo;Lim, Yeong-Seog
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.23-30
    • /
    • 2022
  • The active phased array antenna system performs beam steering, multi-beam formation and adaptive beam forming by controlling the amplitude and phase of signals fed to each radiating element. In order to obtain the desired radiation characteristics using an active phased array antenna system, the accurate amplitude and phase of the signal must be fed to each radiating element; however, due to various causes, the signal errors occurs in each radiating element. In this paper, a signal error estimation method of each radiating element is proposed. The proposed method simplifies the process of signal error estimation, and can quickly and accurately calculate the signal error.

Design of Circular Microstrip Patch 2×2 Array Antenna for S-band Applications (S-밴드용 원형 마이크로스트립 패치 2×2 배열 안테나의 설계)

  • Ahn, Yong-Bok;Choi, Byoung-Ha
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.1
    • /
    • pp.64-71
    • /
    • 2007
  • In this paper, we have designed and fabricated microstrip antenna of S-band for the wireless LAN and the ISM. It array $2{\times}2$ circular patch antenna elements at plane instead of conventional rectangular patch antenna elements. It optimized to size calculated of single patch antenna. The radiation elements distance is array $0.24{\lambda}$. The fabricated circular patch antenna decreased 8% of size compared to the conventional rectangular patch antenna. In the E-plane, designed circular microstrip patch $2{\times}2$ array antenna gain is 12.7[dBi], half power beam width is $40^{\circ}$ and in the H-plane, antenna gain is 12.1[dBi], half power beam width is $45^{\circ}$. Bandwidth is 250[MHz] (VSWR < 2).

  • PDF

Design and Fabrication of 24 GHz 3-Beam Scan Antennas for ACC Applications (자동 주행 차량을 위한 24 GHz 3-Beam Scan 안테나의 설계 및 제작)

  • 원영진;이영주;공영균;김영수
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.1
    • /
    • pp.81-88
    • /
    • 2003
  • For driver's convenience, the ACC(Adaptive Cruise Control) requires a system which determines the direction of vehicles and controls the vehicle to keep the distance among the automobiles constant. This paper describes the microstrip array antennas designed to operate at 24 GHz, and used as a direction indicator of moving vehicles. 8${\times}$2 transmit array antenna with wide beamwidth, 8${\times}$4 receive center array antenna, and two 8${\times}$8 receive array antennas with narrow beamwidth were designed and fabricated. Measurement results for the arrays showed that the azimuthal beamwidth is 50$^{\circ}$and the gain is 16.7 dBi for the transmit array antenna. For the receive array antenna, the center, the left, and the right array antenna have beamwidths of 20$^{\circ}$, 13$^{\circ}$, 13$^{\circ}$respectively, and have gains of more than 20 dBi. The left and right array antenna have the beam tilt angle of ${\pm}$18$^{\circ}$. The measured radiation patterns showed a good agreement with the simulated patterns, and the designed array antennas are suitable fur detecting 3 directions of the vehicle within the scan angle area.

Performance Analysis of Spatial Adaptive Null Pattern Control Algorithm for 5 Elements Array Antenna (5소자 배열안테나의 공간 적응 널패턴 제어 알고리즘 성능분석)

  • Ahn, Seung-Gwan;Lee, Sang-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.313-319
    • /
    • 2010
  • GNSS receiver which uses the weak satellite signal is very vulnerable to the intentional jamming or non-intentional electromagnetic interference. One of the best method to overcome this disadvantage is to use an adaptive array antenna which has the capability of beamforming or nulling to the certain direction. In this paper, the performance of spatial adaptive null pattern control algorithm of 5 element array antenna is analyzed. A control algorithm which is designed in the 5 element array antenna is OPM(Output Power Minimization) which is eliminating the correlation characteristics between a reference antenna and the others. This algorithm can be applied effectively to the satellite navigation's CRPA because the satellite direction is not considered and GNSS signal power is below the thermal noise. The feature of the OPM algorithm is analyzed and the performance is compared with other null pattern control algorithm.

Design and Analysis of High Gain Beamforming Patch ESPAR Antenna for Railroad Wireless Communication (철도 무선통신을 위한 단일 RF 체인을 사용하는 고이득 빔포밍 패치 ESPAR 안테나 설계 및 분석)

  • Choi, Jinkyu;Jang, Kukhan;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.8
    • /
    • pp.710-717
    • /
    • 2015
  • In this paper, we design an array antenna structure based on a patch ESPAR(Electronically Steerable Parasitic Array Radiator) antenna with three elements for reliable communication in high-speed railway wireless communication. The ESPAR antenna consists of the active element with a single RF-chain and the parasitic elements surrounding an active element. The ESPAR antenna is capable of beamforming by adjusting the reactance of the parasitic element. We propose a vertical array antenna structure based on the patch ESPAR antenna and simulate it according to the change of the number of antennas and the distance between antenna rows. The simulation results show that we can get the maximum beam gain and highest directivity when the distance between antenna rows is ${\lambda}$.

STUDY ON THE OPTIMAL PLANAR ARRAY STRUCTURE WITH TRIANGULAR LATTICE FOR SIDE-LOBE REDUCTION (삼각 격자구조를 갖는 평면배열 안테나의 부엽 레벨 감소를 위한 최적 평면배열 형상에 관한 연구)

  • 배지훈;성낙선;이태윤;김종면;표철식
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.250-254
    • /
    • 2002
  • In this paper, we design an optimized planar array structure with triangular lattice for side-lobe reduction using a genetic algorithm. A constraint optimization is implemented by optimally removing some outer array elements far from the array center. It is shown that only the proper array shape without optimizing the magnitudes and phases of each array antenna can give low side-lobe level with a slight main beam broadening.

  • PDF

Design of 4-Bit TDL(True-Time Delay Line) for Elimination of Beam-Squint in Wide Band Phased-Array Antenna (광대역 위상 배열 안테나의 빔 편이(Beam-Squint) 현상 제거를 위한 4-Bit 시간 지연기 설계)

  • Kim, Sang-Keun;Chong, Min-Kil;Kim, Su-Bum;Na, Hyung-Gi;Kim, Se-Young;Sung, Jin-Bong;Baik, Seung-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.10
    • /
    • pp.1061-1070
    • /
    • 2009
  • In this paper, we have designed TDL(True-time Delay Line) for eliminating beam-squint occurring in active phased array antenna with large electrical size operated in wide bandwidth, and have tested its electrical performance. The proposed TDL device is composed of 4-bit microstrip delay line structure and MMIC amplifier for compensation of the delay-line loss. The measured results of gain and phase versus delay state satisfy the electrical requirements, also P1dB output power and noise figure meet the requirement. To verify the performance of fabricated TDL, we have simulated the beam patterns of wide-band active phased array antenna using the measured results and have certified the beam pattern compensation performance. As a result of simulated beam pattern compensation with respect to the 675.8 mm size antenna which is operated in X-band, 800 MHz bandwidth, we have reduced the beam squint error of ${\pm}1^{\circ}$ with ${\pm}0.1^{\circ}$. So this TDL module is able to be applied to active phase array antenna system.

Beam Control of Multiple Array Antenna Using The Modified Genetic Algorithm (변형된 유전자 알고리즘을 이용한 Multiple Array Antenna의 Beam 제어방식)

  • Hyun, Kyo-Hwan;Jung, Kyung-Kwon;Eom, Ki-hwan
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.921-922
    • /
    • 2006
  • This paper presents a novel scheme that quickly searches for the sweet spot of multiple array antennas, and locks on to it for high-speed millimeter wavelength transmissions. The proposed method utilizes a modified genetic algorithm, which selects a superior initial group through preprocessing in order to solve the local solution in a genetic algorithm. TDD (Time Division Duplex) is utilized as the transfer method and data controller for the antenna. Once the initial communication is completed for the specific number of individuals, no longer antenna's data will be transmitted until each station processes GA in order to produce the next generation. After reproduction, individuals of the next generation become the data, and communication between each station is made again. Simulation results confirmed the efficiency of the proposed method.

  • PDF

Fabrication of 24 GHz 3-Beam Scan Antenna for ACC Applications (자동 주행 차량을 위한 24 GHz 3-Beam Scan 안테나의 제작)

  • 원영진;이영주;공영균;김영수
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.263-267
    • /
    • 2002
  • For driver's convenience, the ACC (Adaptive Cruise Control) requires a system which controls the vehicle to keep the distance among the automobiles constant. This paper describes the microstrip array antennas designed to operate at 24 GHz, and used as a direction indicator of moving vehicles. $8{\times}2$ transmit away antenna with wide beamwidth, $8{\times}4$ receive center array antenna, and two $8{\times}8$ receive array antennas with narrow beamwidth were designed. The measured result shows that the designed array antennas arc suitable fur detecting 3 directions of the vehicle when the scan angle is within the restricted area.

  • PDF

A Study on the Shaped-Beam Antenna with High Gain Characteristic (고이득 특성을 갖는 성형 빔 안테나에 대한 연구)

  • Eom, Soon-Young;Yun, Je-Hoon;Jeon, Soon-Ick;Kim, Chang-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.1 s.116
    • /
    • pp.62-75
    • /
    • 2007
  • This paper describes a shaped-beam antenna for increasing the antenna gain of a radiating element. The proposed antenna structure is composed of an exciting element and a multi-layered disk array structure(MDAS). The stack micro-strip patch elements were used as the exciter for effectively radiating the electromagnetic power to the MDAS over the broadband, and finite metallic disk array elements - which give the role of a director for shaping the antenna beam with the high gain - were finitely and periodically layered onto it. The efficient power coupling between the exciter and the MDAS should be carried out in such a way that the proposed antenna has a high gain characteristic. The design parameters of the exciter and the MDAS should be optimized together to meet the required specifications to meet the required specifications. In this study, a shaped-beam antenna with high gain was optimally designed under the operating conditions with a linear polarization and the frequency band of $9.6{\sim}10.4\;GHz$. Two methods constructed using thin dielectric film and dielectric foam materials respectively were also proposed in order to implement the MBAS of the antenna. In particular, through the computer simulation process, the electrical performance variations of the antenna with the MDAS realized by the thin dielectric film materials were shown according to the number of disk array elements in the stack layer. Two kinds of antenna breadboard with the MDAS realized with the thin dielectric film and dielectric foam materials were fabricated, but experimentation was conducted only on the antenna breadboard(Type 1) with the MDAS realized with the thin dielectric film materials according to the number of disk array elements in the stack layer in order to compare it with the electrical performance variations obtained during the simulation. The measured antenna gain performance was found to be in good agreement with the simulated one, and showed the periodicity of the antenna gain variations according to the stack layer number of the disk array elements. The electrical performance of the Type 1 antenna was measured at the center frequency of 10 GHz. As the disk away elements became the ten stacks, a maximum antenna gain of 15.65 dBi was obtained, and the measured return loss was not less than 11.4 dB within the operating band. Therefore, a 5 dB gain improvement of the Type 1 antenna can be obtained by the MDAS that is excited by the stack microstrip patch elements. As the disk array elements became the twelve stacks, the antenna gain of the Type 1 was measured to be 1.35 dB more than the antenna gain of the Type 2 by the outer dielectric ring effect, and the 3 dB beam widths measured from the two antenna breadboards were about $28^{\circ}$ and $36^{\circ}$ respectively.