• Title/Summary/Keyword: Aromatic compound

Search Result 295, Processing Time 0.023 seconds

Aerobic Degradation of Tetrachloroethylene(PCE) by Pseudomonas stutzeri OX1

  • Ryoo, Doohyun;Shim, Hojae;Barbieri, Paola;Wood, Thomas K.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.207-208
    • /
    • 2000
  • Since trichloroethylene (TCE), dichloroethylene (DCE), and vinyl chloride (VC) arise from anaerobic degradation of tetrachloroethylene (PCE) and TCE, there is interest in creating aerobic remediation systems that avoid the highly toxic VC and cis-DCE which predonominate in anaerobic degradation. However, it seemed TCE could not be degraded aerobically without an inducing compound (which also competitively inhibits TCE degradation). It has been shown that TCE induces expression of both the toluene dioxygenase of p. putida F1 as well as toluene-p-monooxygenase of P.mendocina KRI. We investigated here the ability of PCE, TCE, and chlorinated phenols to induce toluene-o-xylene monooxygenase (ToMO) from P.stutzeri OX1. ToMO has a relaxed regio-specificity since it hydroxylates toluene in the ortho, meta, and para positions; it also has a broad substrate range as it oxidizes o-xylene, m-xylene, p-xylene, toluene, benzene, ethylbenzene, styrene, and naphthalene; chlorinated compounds including TCE, 1, 1-DCE, cis-DCE, trans-DCE, VC, and chloroform : as well as mixtures of chlorinated aliphatics (Pseudomonas 1999 Maui Meeting). ToMO is a multicomponent enzyme with greatest similarity to the aromatic monooxygenases of Burkholderia pickettii PKO1 and P.mendocina KR1. Using P.sturzeri OX1, it was found that PCE induces P.mendocina KR1 Using P.situtzeri OX1, it was found that PCE induces ToMO activity measured as naphthalene oxygenase activity 2.5-fold, TCE induces 2.3-fold, and toluene induces 3.0 fold. With the mutant P.stutzeri M1 which does not express ToMO, it was also found there was no naphthalene oxygenate activity induced by PCE and TCE; hence, PCE and TCE induce the tow path. Using P.putida PaW340(pPP4062, pFP3028) which has the tow promoter fused to the reporter catechol-2, 3-dioxygenase and the regulator gene touR, it was determined that the tow promoter was induced 5.7-, 7.1-, and 5.2-fold for 2-, 3-, 4-chlorophenol, respectively (cf. 8.9-fold induction with o-cresol) : however, TCE and PCE did not directly induce the tou path. Gas chromatography and chloride ion analysis also showed that TCE induced ToMO expression in P.stutzeri OX1 and was degraded and mineralized. This is the first report of significant PCE induction of any enzyme as well as the first report of chlorinated compound induction of the tou operon. The results indicate TCE and chlorinated phenols can be degraded by P.stutzeri OX1 without a separate inducer of the tou pathway and without competitive inhibition.

  • PDF

Identification of Irradiation-induced Volatile Flavor Compounds in Chicken (방사선 조사 닭고기에서의 휘발성 조사물질의 구명)

  • Cha, Yong-Jun;Kim, Hun;Park, Sung-Young;Cho, Wo-Jin;Yoon, Seong-Suk;You, Young-Jae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.6
    • /
    • pp.1050-1056
    • /
    • 2000
  • To identify the irradiation-induced volatile flavor compounds, which were not detected in unirradiated sample and had positive correlation with the increment of irradiation dose, the volatile flavor compounds of irradiated (0, 1, 3, 5, 10 kGy) chicken were analyzed by liquid liquid continuous extraction (LLCE) and gas ehromatographyimass spectrometry (GC/MS) methods. One hundred twenty nine compounds were detected in irradiated chicken, and these compounds were composed mainly of hydrocarbons (62 compounds), aromatic compounds (44), aldehydes (9), ketones (5) and miscellaneous compounds (10). Among these, only 3 volatile compounds including 2-methylpentanal (r=0.24), 4-methylcyclohexene (r=0.08) and cyclotetradecene (r=0.92), were detected as irradiation-induced volatile flavor compounds in irradiated chicken. However, only cyclotetradecene was selected as a marker compound for detecting irradiation dosages with high correlation coefficient in irradiated chicken.

  • PDF

Synthesis of Some New 4,5-dihydro-6-(4-methoxy-3-methylphenyl)-3(2H)-pyridazinone Derivatives (4,5-Dihydro-6-(4-methoxy-3-methylphenyl)-3(2H)-pyridazinone계 화합물의 합성 연구)

  • Soliman, Mohamed H. A.;El-Sakka, Sahar S.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.2
    • /
    • pp.230-234
    • /
    • 2011
  • The present study describes the synthesis of 4,5-dihydro-6-(4-methoxy-3-methylphenyl)-3(2H)-pyridazinone derivatives. The synthesis of the first target compound, 4,5-dihydro-6-(4-methoxy-3-methylphenyl)-3(2H)-pyridazinone (1), was achieved by Friedel-Crafts acylation of o-cresyl methyl ether with succinic anhydride and subsequent cyclization of the intermediary g-keto acid with hydrazine hydrate. Condensation of compound 1 with aromatic aldehydes in the presence of sodium ethoxide affords the corresponding 4-substituted benzyl pyridazinones (3a-d). The dihydropyridazinone 1 underwent dehydrogenation upon treatment with bromine/acetic acid mixture to give (4). Pyridazine (5) has been synthesized upon the reaction of pyridazinone (1) with 1,3-diphenyl-2-propen-1-one under the Michael addition reaction. N-dialkylaminomethyl derivatives 6a-b have been obtained from the reaction of pyridazinone 1 with formaldehyde and secondary amine, whereas reaction of 1 with formaldehyde gives N-hydroxymethyl derivative (7). This study also includes the synthesis of the 3-chloropyridazine derivative 8 in excellent yield by heating pyridazinone 3b in phosphorus oxychloride. The behaviour of the chloro derivative toward sodium azide, benzyl amine and anthranilic acid was also studied. The proposed structures of the products were confirmed by elemental analysis, spectral data and chemical evidence.

Assessment of Sensitivity of Photo-Chromosomal Assay in the Prediction of Photo-carcinogenicity (광염색체이상시험의 광발암성 예측능력에 대한 평가)

  • Hong Mi-Young;Kim Ji-Young;Lee Young Mi;Lee Michael
    • Toxicological Research
    • /
    • v.21 no.2
    • /
    • pp.99-105
    • /
    • 2005
  • Photo-mutagenic compounds have been known to alter skin cancer rates by acting as initiators or by affecting subsequent steps in carcinogenesis. The objectives of this study are to investigate the utility of photo-chromosomal aberration (photo-CA) assay for detecting photo-clastogens, and to evaluate its ability to predict rodent photocarcinogenicity. Photo-CA assay was performed with five test substances that demonstrated positive results in photo-carcinogenicity tests: 8-Methoxypsoralen (photoactive substance that forms DNA adducts in the presence of ultraviolet A irradiation), chlorpromazine (an aliphatic phenothiazine an alpha-adrenergic blocking agent), lomefloxacin (an antibiotic in a class of drugs called fluoroquinolones), anthracene (a tricyclic aromatic hydrocarbon a basic substance for production of anthraquinone, dyes, pigments, insecticides, wood preservatives and coating materials) and Retinoic acid (a retinoid compound closely related to vitamin A). For the best discrimination between the test substance-mediated genotoxicity and the undesirable genotoxicity caused by direct DNA absorption, a UV dose-response of the cells in the absence of the test substances was firstly analyzed. All 5 test substances showed a positive outcome in photo-CA assay, indicating that the photo-CA test is very sensitive to the photo-genotoxic effect of UV irradiation. With this limited data-set, an investigation into the predictive value of this photo-CA test for determining the photo-carcinogenicity showed that photo-CA assay has the high ability of a test to predict carcinogenicity. Therefore, the photo-CA test using mammalian cells seems to be a sensitive method to evaluate the photo-carcinogenic potential of new compounds.

Synthesis and Properties of Diarylamino-Substituted Linear and Dendritic Oligoquinolines for Organic Light-Emitting Diodes

  • Lee, Ho-Joon;Xin, Hao;Park, Seong-Min;Park, Seog-Il;Ahn, Taek;Park, Dong-Kyu;Jenekhe, Samson A.;Kwon, Tae-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1627-1637
    • /
    • 2012
  • The coupling reaction between 5-bromo-3-phenylbenzo[c]isoxazole and diphenylamine followed by further condensation with a mono-, di- or ter-acetyl aromatic compound in the presence of diphenyl phosphate at $145^{\circ}C$ gave a novel asymmetric diarylquinolines, oligoquinolines with diphenylamine endgroups, and a first generation quinoline dendrimer in 41-82% isolated yield. The electrochemical and photophysical properties of the oligoquinolines were characterized by cyclic voltammograms (CVs) and spectroscopy. All the quinolines emit bright sky blue light due to charge transfer from quinoline group to diphenly amine with very high quantum efficiency (> 90%). Organic light-emitting diodes (OLEDs) were fabricated using these quinolines as emitting materials. Among different device architectures explored, OLEDs with a structure of ITO/PEDOT (40 nm)/TAPC (15 nm)/D-A quinoline (40 nm)/TPBI (30 nm)/LiF (1 nm)/Al using TAPC as an electron blocking layer and TPBI as a hole blocking layer gave the best performance. A high external quantum efficiency in the range of 1.2-2.3% were achieved in all the quinolines with the best performance in BBQA(5). Our results indicate diarylamino-substituted oligoquinoline and dendrimer are promising materials for OLEDs applications.

Analysis of Organic Compounds in Ambient PM2.5 over Seoul using Thermal Desorption-comprehensive Two Dimensional Gas Chromatography-time of Flight Mass Spectrometry (TD-GCxGC-TOFMS) (Thermal Desorption-comprehensive Two Dimensional Gas Chromatography-time of Flight Mass Spectrometry (TD-GCxGC-TOFMS)을 이용한 서울 대기 중 PM2.5 유기성분 분석)

  • Lee, Ji-Yi;Lane, Douglas A.;Huh, Jong-Bae;Yi, Sung-Muk;Kim, Yong-Pyo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.5
    • /
    • pp.420-431
    • /
    • 2009
  • Characteristics and advantages of the thermal desorption-comprehensive two dimensional gas chromatography-time of flight mass spectrometry (TD-GCxGC-TOFMS) were discussed and the organic compound's analysis result was shown for the ambient $PM_{2.5}$ sample collected in Seoul, Korea. Over 10,000 individual organic compounds were separated from about $70{\mu}g$ of aerosols in a single procedure with no sample pre-treatment. Among them, around 300 compounds were identified and classified based on the mass fragmentation patterns and GCxGC retention times. Several aliphatic compounds groups such as alkanes, alkenes, cycloalkanes, alkanoic acids, and alkan-2-ones were identified as well as 72 PAH compounds including alkyl substituted compounds and 8 hopanes. In Seoul aerosol, numerous oxidized aromatic compounds including major components of secondary organic aerosols were observed. The inventory of organic compounds in $PM_{2.5}$ of Seoul, Korea suggested that organic aerosol were constituted by the compounds of primary source emission as well as the formation of secondary organic aerosols.

Studies on the Utilization of Phenolic Substance by Yeast (효모에 의한 phenol 성 물질의 자화에 관한 연구)

  • 김상달;서정훈
    • Microbiology and Biotechnology Letters
    • /
    • v.6 no.4
    • /
    • pp.155-159
    • /
    • 1978
  • Phenol utilizing yeast No. 558 isolated from soil sewage sediment was able to use substantial amount of phenol as the sole carbon source, and the biomass productivity by this organism was very excellent. This organism could grow well in 1000 ppm of phenol concentration, the maxim-um specific growth rate obtainable at pH 5.0, 3$0^{\circ}C$ was 0.27/hr., and the biomass yield coefficient Y vs. consumed phenol was 3.2. Maximum production rate of biomass was observed at 35$^{\circ}C$, pH 3.5 to pH 4.5, and the addition of the 0.005~0. 01% yeast extract was the most effective. Addition of HgCl$_2$ and phenyl hydrazine, inhibitors of oxide-reductase, in the phenol containing cultural liquid caused this organism no-growth at the concentration of 10$^{-5}$ M, 10$^{-3}$ M respectively. This organism could utilize not only phenol but catechol, resorcinol and benzidine.

  • PDF

Pervaporation Separation of Trace Dicholoromethane from Water Using Fluorinated Polysiloxaneimide do Membranes (불소계 폴리실록산이미드 공중합체막을 이용한 저농도 Dichloromethane 수용액의 투과증발)

  • Kim, Jeong-Hoon;Chang, Bong-Jun;Lee, Soo-Bok
    • Membrane Journal
    • /
    • v.17 no.3
    • /
    • pp.184-190
    • /
    • 2007
  • This study reports on the pervaporation separation of a volatile organic compound(VOC), dichloromethane(DCM) from water using fluorinated copolysiloxaneimide membranes. The copolysiloxaneimide membranes were prepared from 4,4'-(hexafluoroisopropylidene)diphthalic anhydride(6FDA) and two diamines(polysiloxane diamine(SIDA), 2-(perfluorohexyl)ethyl-3,5-diaminobenzene(PFDAB)). By varying the ratio of flexible polysiloxane diamine(SIDA)/rigid fluorinated aromatic diamine(PFDAB) from 0/100 to 100/0 mol%, five copolysiloxaneimide membranes were prepared success- fully. The pervaporation properties of DCM/water were examined in terms of two diamine monomer ratio at room temperature and the feed composition of 0.05 wt% in water. It was found that the increase in SIDA content led to high permeation flux and pervaporation selectivity towards DCM by the enhanced sorption/sorption selectivity and diffusion coefficient/diffusion selectivity due to the increased hydrophobicity and fractional free volume.

In Vivo $^{13}C$-NMR Spectroscopic Study of Polyhydroxyalkanoic Acid Degradation Kinetics in Bacteria

  • Oh, Jung-Sook;Choi, Mun-Hwan;Yoon, Sung-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1330-1336
    • /
    • 2005
  • Polyhydroxyalkanoic acid (PHA) inclusion bodies were analyzed in situ by $^{13}C$-nuclear magnetic resonance ($^{13}C$-NMR) spectroscopy. The PHA inclusion bodies studied were composed of poly(3-hydroxybutyrate) or poly(3hydroxybutyrate-co-4-hydroxybutyrate), which was accumulated in Hydrogenophaga pseudoflava, and medium-chain-length PHA (MCL-PHA), which was accumulated in Pseudomonas fluorescens BM07 from octanoic acid or 11-phenoxyundecanoic acid (11-POU). The quantification of the $^{13}C$-NMR signals was conducted against a standard compound, sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS). The chemical shift values for the in vivo NMR spectral peaks agreed well with those for the corresponding purified PHA polymers. The intracellular degradation of the PHA inclusions by intracellular PHA depolymerase(s) was monitored by in vivo NMR spectroscopy and analyzed in terms of first-order reaction kinetics. The H. pseudoflava cells were washed for the degradation experiment, transferred to a degradation medium without a carbon source, but containing 1.0 g/l ammonium sulfate, and cultivated at $35^{\circ}C$ for 72 h. The in vivo NMR spectra were obtained at $70^{\circ}C$ for the short-chain-length PHA cells whereas the spectra for the aliphatic and aromatic MCL-PHA cells were obtained at $50^{\circ}C\;and\;80^{\circ}C$, respectively. For the H. pseudoflava cells, the in vivo NMR kinetics analysis of the PHA degradation resulted in a first-order degradation rate constant of 0.075/h ($r^{2}$=0.94) for the initial 24 h of degradation, which was close to the 0.050/h determined when using a gas chromatographic analysis of chloroform extracts of sulfuric acid/methanol reaction mixtures of dried whole cells. Accordingly, it is suggested that in vivo $^{13}C$-NMR spectroscopy is an important tool for studying intracellular PHA degradation in terms of kinetics.

Modification of N-Terminal Amino Acids of Fungal Benzoate Hydroxylase (CYP53A15) for the Production of p-Hydroxybenzoate and Optimization of Bioproduction Conditions in Escherichia coli

  • Tamaki, Shun;Yagi, Mitsuhiko;Nishihata, Yuki;Yamaji, Hideki;Shigeri, Yasushi;Uno, Tomohide;Imaishi, Hiromasa
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.3
    • /
    • pp.439-447
    • /
    • 2018
  • The aromatic compound p-hydroxybenzoate (PHBA) is an important material with multiple applications, including as a building block of liquid crystal polymers in chemical industries. The cytochrome P450 (CYP) enzymes are beneficial monooxygenases for the synthesis of chemicals, and CYP53A15 from fungus Cochliobolus lunatus is capable of executing the hydroxylation from benzoate to PHBA. Here, we constructed a system for the bioconversion of benzoate to PHBA in Escherichia coli cells coexpressing CYP53A15 and human NADPH-P450 oxidoreductase (CPR) genes as a redox partner. For suitable coexpression of CYP53A15 and CPR, we originally constructed five plasmids in which we replaced the N-terminal transmembrane region of CYP53A15 with a portion of the N-terminus of various mammalian P450s. PHBA productivity was the greatest when CYP53A15 expression was induced at $20^{\circ}C$ in $2{\times}YT$ medium in host E. coli strain ${\Delta}gcvR$ transformed with an N-terminal transmembrane region of rabbit CYP2C3. By optimizing each reaction condition (reaction temperature, substrate concentration, reaction time, and E. coli cell concentration), we achieved 90% whole-cell conversion of benzoate. Our data demonstrate that the described novel E. coli bioconversion system is a more efficient tool for PHBA production from benzoate than the previously described yeast system.