• Title/Summary/Keyword: Armored Recovery Vehicle

Search Result 4, Processing Time 0.021 seconds

Structural Integrity Evaluation for Crane Bracket of Armored Recovery Vehicle (구난장갑차 크레인 브래킷에 대한 구조건전성 평가)

  • Jung, Jae-Woong;Jung, Un-Hwa;Kim, Cheon-Soo;Yu, Young-Soo;Park, Kyung-Chul;Park, Ki-Chul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.653-658
    • /
    • 2013
  • For towing the new type armored vehicle and maintaining the close support, the armored recovery vehicle(ARV) with winch and crane has been developed. In case of crane, it is mainly used to salvage heavy objects by rotational and vertical motion. Especially, the crane bracket is very important parts due to fixing the ARV's body and rotary joint and preventing the force rotation of crane. Therefore, the crane bracket needs to have an enough strength to endure the high load and it is very important to analyze the stress distribution under loads. In the present work, the experimental and analytical investigation on structural integrity evaluation of crane bracket were carried out. The simulation of three-dimensional finite element method(FEM) was compared with experimental datum. From the numerical results, the FEM simulations corresponded well with th experimental results and the structural safety was confirmed by safety factor.

A Study on the Structural Design for Safety Improvement of the Winch Mount of an Armored Recovery Vehicle (구난장갑차 윈치 마운트의 안전율 향상을 위한 구조설계 연구)

  • Ryu, Jeong-Min;Park, Kyung-Chul;Kang, Tae-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.58-62
    • /
    • 2017
  • In this paper, we studied the structural design for safety improvement of the winch mount of the armored recovery vehicle. From the finite element analysis using the safety factor of the original winch mount, the results determined that the safety factor was very low, namely 1.14 at $-15^{\circ}$ when towing the maximum force. For considering the usage and safety, the safety factor needs to increase to between 1.4 and 1.6. To improve the safety factor, a re-design, such as shape modification and strengthening the welded zone, was performed. After the improvement of the structural design, the safety factor of the improved mount was calculated at 1.78, an increase of about 56.1% from that of the original mount.

A Study on the Oil-Controlling Adapter of Power Take-Off for Armored Recovery Vehicles (구난장갑차 동력인출장치의 오일조절용 어댑터 개발)

  • Park, Kyung-Chul;Shin, Hun-Yong;Lee, Chang-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.46-50
    • /
    • 2016
  • When rotating the clutch drum in the power take-off (PTO) gear box of an armored recovery vehicle, lots of inner oil is drained through the adapter by centrifugal force. Therefore, a lack of lubrication is caused by inner oil loss, and the bearing is damaged by overheating. This study, therefore, aims to design an oil-controlling adapter by using shape alteration to prevent oil loss. Both the original and improved adapters were tested at 1,800rpm by using an operational test machine. When applying the original adapter to the gear box, the bearing was damaged by overheating, which was caused by the lack of lubrication. When applying the improved oil-controlling adapter, on the other hand, it prevented the loss of inner oil. Applying the improved adapter is expected to prevent the overheating caused by lack of lubrication.

A Study on Power Management Strategy for Multi-Power Source Fuel Cell Hybrid Armored Vehicle (다중 동력 연료전지 하이브리드 장갑차량의 동력관리 전략에 관한 연구)

  • An Sang-Jun;Kim Tae-Jin;Lee Kyo Il
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.361-365
    • /
    • 2005
  • Since the fuel cell uses the hydrogen for its fuel. it has no emission and higher efficiency than an internal combustion engine. Also fuel cell is much quieter than engine generator and generates heat much less than engine generator. So it has advantage of Army's 'si lent watch' capability and the ability to operate undetected by the enemy. The fuel cell hybrid system combines a fuel cell power system with an ESS. The ESS (e.g., batteries or ultracapacitors) reduces the fuel cell's peak power and transient response requirements. It allows the fuel cell to operate more efficiently and recovery of vehicle energy during deceleration. The battery has high energy density, so it has the advantage regarding driving distance. However, it has a disadvantage considering dynamic characteristic because of low power density. One other hand. the ultracapacitor has higher power density, so it can handle sudden change or discharge of required power. Yet. it has lower energy density. so it will be bigger and heavier than the battery when it has the same energy. This paper proposes the power management strategy for multi-power source fuel cell hybrid system. which is applied with the merits of both battery and ultra capacitor by using both of them simultaneous.

  • PDF