• Title/Summary/Keyword: Armature reaction magnetic field

Search Result 16, Processing Time 0.019 seconds

Analytical Performance Modelling of Slotted Surface-Mounted Permanent Magnet Machines with Rotor Eccentricity

  • Yan, Bo;Wang, Xiuhe;Yang, Yubo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.778-789
    • /
    • 2017
  • This paper presents an improved subdomain method to predict the magnet field distributions and electromagnetic performance of the surface-mounted permanent magnet (SPM) machines with static or dynamic eccentricity. Conventional subdomain models are either based on the scalar magnet potential to predict the rotor eccentricity effect or dependent on the magnetic vector potential without considering the eccentric rotor. In this paper, both the magnetic vector potential and the perturbation theory are introduced in order to accurately calculate the effect of rotor eccentricity on the open-circuit and armature reaction performance. The calculation results are presented and validated by the corresponding finite-element method (FEM) results.

Electromagnetic Analysis of Slotless Brushless Permanent Magnet Machines According to Magnetization Patterns (슬롯리스 브러시리스 영구자석기기의 자화 패턴에 따른 전자기적 특성해석)

  • Jang Seok-Myeong;Choi Jang-Young;Cho Han-Wook;Park Ji-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.12
    • /
    • pp.576-585
    • /
    • 2005
  • This paper deals with the electromagnetic field analysis of slotless brushless permanent magnet machines with three different magnetization patterns such as Halbach, parallel and radial magnetization. The magnetization modeling of Halbach, parallel and radial magnetization is performed analytically. And then, analytical solutions for open-circuit field distributions, armature reaction field distributions, flux linkages due to PMs and stator windings, torque, back-emf and inductance are derived in terms of magnetic vector potential and two-dimensional (2-d) polar coordinate systems. The analytical results are validated extensively by finite element (FE) analyses. The magnet volume required in order to produce identical flux density is compared with each magnetization. Finally, analytical solutions and derivation procedures of those presented in this paper can be applied to slotless and slotted brushless permanent magnet AC and DC machines.

Study on the Reduction Method of Magnetic Noise and Vibration in Home Electric Motors (가전기기용전동기의 전자소음과 진동의 방지대책에 관한 연구)

  • 황영문;조철제
    • 전기의세계
    • /
    • v.26 no.5
    • /
    • pp.74-82
    • /
    • 1977
  • This study is to present a method for reductin of noise and vibration of home electric motors coupled to the mechanical load causing relatively big amplitude of vibration. The noise and vibration factors have been analysed in the divisions such as the pattern related to the armature reaction, the pattern related to the circulating current by induction and the other patterns those are affected by a dditive magnetic field and have an effect on mechanical constants. From the systematic mutual relations between the patterns and daping effects, it is possible to derive the fundamental measure for reduction of noise and vibration. Vibration measurements and analysis were carried out in accordance with the planned experimentation and thre object model was chosen randomly from the production line in a factory where home electric machines were mass-produced. Based on the above-mentioned fundamental measure, suppression effects on noise and vibration have been analysed according to the number of slots, the amount of rotor skew and the way the stator winding connection was series or parallel.

  • PDF

A study of Induction Voltage Regulator Imporvement (동극 및 이극에 의한 유도전 압조정방식)

  • 오상세
    • 전기의세계
    • /
    • v.15 no.5
    • /
    • pp.32-39
    • /
    • 1966
  • This voltage Regulator, which regulates voltage in different way from the conventional regulator, is constructed by circular-plate core type stators and controllers (are similar to rotor of conventional). The principle of this Voltage Regulator is based on the rotating magnetic field theory including peculiar homopolar and heteropolar concept. Comparing with the conventional induction regulator, this regulator need not to have short windings and can cancel armature reaction. Moreover, it is able to decrease the machine noise and control the phase of it freely. And it's efficiency can become more than 95% which almost the same as that of transformer's. By increasing numbers of cores of the same size, the output power can be increased, the insulation can be decreased and high Voltage can directly be connected because applied voltage is distributed to each core. This Voltage Regulator can be also used as a current regulator, a starter a induction motor and a phase transformer etc.

  • PDF

Characteristic Analysis of Permanent Magnet Linear Generator by using Space Harmonic Method (공간고조파법을 이용한 영구자석 선형 발전기의 특성 해석)

  • Seo, Seong-Won;Choi, Jang-Young;Kim, Il-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.688-695
    • /
    • 2017
  • This paper deals with characteristics analysis of a permanent magnet (PM) linear generator using analytical methods for wave energy harvesting. The wave energy is carried out from the movement of a yo-yo system. A linear generator using permanent magnets to generate a magnetic force itself does not require a separate power supply and has the advantage of simple maintenance. In addition to the use of a rare earth, a permanent magnet having a high-energy density can be miniaturized and lightweight, and can obtain high energy-conversion efficiency. We derived magnetic field solutions produced by the permanent magnet and armature reaction based on 2D polar coordinates and magnetic vector potential. Induced voltage is obtained via arbitrary sinusoidal input. In addition, electrical parameters are obtained, such as back-EMF constant, resistance, and self- and mutual-winding inductances. The space harmonic method used in this paper is confirmed by comparing it with finite element method (FEM) results. These facilitate the characterization of the PM-type linear generator and provide a basis for comparative studies, design optimization, and machine dynamic modeling.

Comparison of Slotted and Slotless Ring-wound PM Brushless Machines for Electro-Mechanical Battery (EMB용 전동발전기 선정을 위한 슬롯형과 슬롯리스 Ring-wound형 영구자석 브러시리스 기기의 특성 비교)

  • Jang, Seok-Myeong;Jeong, Sang-Sub;Ryu, Dong-Wan;Choi, Sang-Kyu
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.3
    • /
    • pp.107-114
    • /
    • 2001
  • Electro-mechanical battery (EMB) consists of a high-speed fly wheel with an integral motor/ generator suspended on magnetic bearings and in an evacuated housing. Permanent magnet (PM) machines as the EMB motor/ generator are a popular choice, since there are no excitation losses which means substantial increase in the efficiency. In this paper we present the comparison of conventional slotted and slotless ring-wound types, aimed at EMB and other high-speed drives. We firstly discuss the topology of each machine for this particular application. these machines are primarily designed as 1kW two-pole PM generator with the rated speed of 40000 rpm. the motoring torque of 0.51 Nm has to be enough to accelerate the flywheel to the rated speed. We then present the comparison of the open-circuit field, the armature reaction field and winding inductance. next we analyze the induced voltage and the developed torque per unit stack length and unit weight of different machines. Finally, we estimate and compare the losses and the efficiency at motoring and generating modes.

  • PDF