• Title/Summary/Keyword: Armature Shaft

Search Result 5, Processing Time 0.017 seconds

A Study of Interior Noise Reduction through In-Vehicle Measurement Test to the Windshield Wiper Motor System (차량용 윈드쉴드 와이퍼 모터의 단품 및 실차시험을 통한 소음 저감 연구)

  • 최창환;임상규
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.862-869
    • /
    • 1998
  • The interior noise generated by the windshield wiper system including a wiper motor, the motor mountings and linkages is considered as a structure-borne noise. The structureborne noise is closely related with the system vibration which was transmitted into interior cabin through the car body. In this study, the frequency characteristics of vibration in the wiper motor system were first identified through the frequency analysis. Then effects of the wiper motor mountings and linkages on the vehicle interior noise were studied through in-vehicle measurements. Finally a possibility of noise reduction at a certain frequency was revealed from the study.

  • PDF

A Study on the Sensorless Speed Control of Permanent Magnet Direct Current Motor (영구자석 직류전동기의 센서리스 속도제어에 관한 연구)

  • Oh, Sae-Gin;Kim, Hyun-Chel;Kim, Jong-Su;Yoon, Kyoung-Kuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.694-699
    • /
    • 2012
  • This paper proposes a new sensorless speed control scheme of permanent magnet DC motor using a numerical model and hysteresis controller, which requires neither shaft encoder, speed estimator nor PI controllers. By supplying the identical instantaneous voltage to both model and motor in the direction of reducing torque difference, the rotor speed approaches to the model speed, namely setting value and the system can control motor speed precisely. As the numerical model whose electric parameters are the same as those of the actual motor is adopted, the armature rotating speed can be converged to the setting value by controlling torque on both sides to be equalized. And the hysteresis controller controls torque by restricting the torque errors within respective hysteresis bands, and motor torque are controlled by the armature voltage. The experiment results indicate good speed and load responses from the low speed range to the high, show accurate speed changing performance.

A Study on the Process Improvement of Commutator Press Fitting by 6 Sigma Process (6시그마 프로세스를 이용한 정류자(Commutator) 압입 공정개선에 관한 연구)

  • Cheong, Seon-Hwan;Choi, Seong-Dae;Yang, Se-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.2
    • /
    • pp.37-42
    • /
    • 2005
  • Recently $6{\sigma}$ quality control is an most important strategy to many enterprises in order to be a top company in the world, because it is an excellent scientific method to achieve the best quality control for their management and products. SY company is a small and medium one that has the quality problem for a long time such as occurring cracks on the surface of commutator at his assembly line while being assembled a rotor shaft and commutator of DC motor. This research was started to improve this problem by $6{\sigma}$ process, and as the results of this study, first, to find three vital fews, second, to get an achievement of about 21% improvement for the fracture strength of commutator, and third, to be recognized to change into $6{\sigma}$ quality control in SY company.

  • PDF

Pulse Counting Sensorless Detection of the Shaft Speed and Position of DC Motor Based Electromechanical Actuators

  • Testa, Antonio;De Caro, Salvatore;Scimone, Tommaso;Letor, Romeo
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.957-966
    • /
    • 2014
  • Some of DC actuators used in home automation, office automation, medical equipment and automotive systems require a position sensor. In low power applications, the introduction of such a transducer remarkably increases the whole system cost, which justifies the development of sensorless position estimation techniques. The well-known AC motor drive sensorless techniques exploiting the fundamental component of the back electromotive force cannot be used on DC motor drives. In addition, the sophisticated approaches based on current or voltage signal injection cannot be used. Therefore, an effective and inexpensive sensorless position estimation technique suitable for DC motors is presented in this paper. This technique exploits the periodic pulses of the armature current caused by commutation. It is based on a simple pulse counting algorithm, suitable for coping with the rather large variability of the pulse frequency and it leads to the realization of a sensorless position control system for low cost, medium performance systems, like those in the field of automotive applications.

Sensorless Passivity Based Control of a DC Motor via a Solar Powered Sepic Converter-Full Bridge Combination

  • Linares-Flores, Jesus;Sira-Ramirez, Hebertt;Cuevas-Lopez, Edel F.;Contreras-Ordaz, Marco A.
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.743-750
    • /
    • 2011
  • This article deals with the sensor-less control of a DC Motor via a SEPIC Converter-Full Bridge combination powered through solar panels. We simultaneously regulate, both, the output voltage of the SEPIC-converter to a value larger than the solar panel output voltage, and the shaft angular velocity, in any of the turning senses, so that it tracks a pre-specified constant reference. The main result of our proposed control scheme is an efficient linear controller obtained via Lyapunov. This controller is based on measurements of the converter currents and voltages, and the DC motor armature current. The control law is derived using an exact stabilization error dynamics model, from which a static linear passive feedback control law is derived. All values of the constant references are parameterized in terms of the equilibrium point of the multivariable system: the SEPIC converter desired output voltage, the solar panel output voltage at its Maximun Power Point (MPP), and the DC motor desired constant angular velocity. The switched control realization of the designed average continuous feedback control law is accomplished by means of a, discrete-valued, Pulse Width Modulation (PWM). Experimental results are presented demonstrating the viability of our proposal.