• Title/Summary/Keyword: Arm-master

Search Result 70, Processing Time 0.021 seconds

An Improvement of Implementation Method for Multi-Layer AHB BusMatrix (ML-AHB 버스 매트릭스 구현 방법의 개선)

  • Hwang Soo-Yun;Jhang Kyoung-Sun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.11_12
    • /
    • pp.629-638
    • /
    • 2005
  • In the System on a Chip design, the on chip bus is one of the critical factors that decides the overall system performance. Especially, in the case or reusing the IPs such as processors, DSPs and multimedia IPs that requires higher bandwidth, the bandwidth problems of on chip bus are getting more serious. Recently ARM proposes the Multi-Layer AHB BusMatrix that is a highly efficient on chip bus to solve the bandwidth problems. The Multi-Layer AHB BusMatrix allows parallel access paths between multiple masters and slaves in a system. This is achieved by using a more complex interconnection matrix and gives the benefit of increased overall bus bandwidth, and a more flexible system architecture. However, there is one clock cycle delay for each master in existing Multi-Layer AHB BusMatrix whenever the master starts new transactions or changes the slave layers because of the Input Stage and arbitration logic realized with Moore type. In this paper, we improved the existing Multi-Layer AHB BusMatrix architecture to solve the one clock cycle delay problems and to reduce the area overhead of the Input Stage. With the elimination of the Input Stage and some restrictions on the arbitration scheme, we tan take away the one clock cycle delay and reduce the area overhead. Experimental results show that the end time of total bus transaction and the average latency time of improved Multi-Layer AHB BusMatrix are improved by $20\%\;and\;24\%$ respectively. in ease of executing a number of transactions by 4-beat incrementing burst type. Besides the total area and the clock period are reduced by $22\%\;and\;29\%$ respectively, compared with existing Multi-layer AHB BusMatrix.

Ergonomic Analysis of Tele-operation Tasks and Remote Handling Devices for a Pyroprocessing Facility

  • Yu, Seung Nam;Lee, Jong Kwang;Kim, Sung Hyun;Park, Byung Suk;Kim, Ki Ho;Cho, Il Je
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.17-26
    • /
    • 2013
  • Objective: The aim of this study is ergonomic analysis of tele-operation tasks using modified remote handling devices dedicated to the cell of PRIDE(PyRoprocess Integrated inactive DEmonstration facility) in KAERI(Korea Atomic Energy Research Institute). Background: Tele-operation manipulators of the PRIDE are applied to perform the remote handling and management of pyroprocessing facilities. Generally, these kinds of systems are composed of master-slave system and its peripherals installed along a wall or ceiling of the cell, and the manipulators transmit the user's own motion to grippers directly. However, a user convenience and intuitiveness while operating the manipulators have not been fully considered in research fields. Method: This study tries to analyze the ergonomic performance of remote handling manipulators in the developed cell facility. It was included that the analysis of operator's capability for his/her own motion range of upper arm while manipulating the MSM, considerations of its manipulation margin and related tool modifications to improve the remote handling performance. Conclusion: The test results of several remote handling tasks performed in PRIDE are represented, and adequate operation strategies for the tele-operation system of hot-cell type facilities are proposed. Application: The knowledge represented in this study can be utilized to improve a tele-operation system operated in a large-scale hot-cell system.

A Development of Rehabilitation System for Upper Limb Using Robot Manipulator (로봇을 이용한 상지 재활 시스템에 관한 연구)

  • 원주연;심형준;한창수
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.309-318
    • /
    • 2003
  • In this paper a 6 degree-of-freedom robot was studied for medical purpose. In the past the robot used for industry field was utilized for medical robot but in these days the robot used for rehabilitation. welfare, and service. This system was Proposed for a stroke patient or a patient who can not use one arm. A master-slave system was constructed to exercise either paralysis or abnormal arm using normal arms movement. Study on the human body motion result was applied to calculate a movement range of humans elbow and shoulder. In addition, a force-torque sensor is applied to estimate the rehabilitation extent of the patient in the slave robot. Therefore, the stability of the rehabilitation robot could be improved. By using the rehabilitation robot, the Patient could exercise by himself without any assistance In conclusion. the proposed system and control algorithm were verified by computer simulation and system experiment.

Motion Visualization of a Vehicle Driver Based on Virtual Reality (가상현실 기반에서 차량 운전자 거동의 가시화)

  • Jeong, Yun-Seok;Son, Kwon;Choi, Kyung-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.201-209
    • /
    • 2003
  • Virtual human models are widely used to save time and expense in vehicle safety studies. A human model is an essential tool to visualize and simulate a vehicle driver in virtual environments. This research is focused on creation and application of a human model fer virtual reality. The Korean anthropometric data published are selected to determine basic human model dimensions. These data are applied to GEBOD, a human body data generation program, which computes the body segment geometry, mass properties, joints locations and mechanical properties. The human model was constituted using MADYMO based on data from GEBOD. Frontal crash and bump passing test were simulated and the driver's motion data calculated were transmitted into the virtual environment. The human model was organized into scene graphs and its motion was visualized by virtual reality techniques including OpenGL Performer. The human model can be controlled by an arm master to test driver's behavior in the virtual environment.

Novel Voltage Source Converter for 10 kV Class Motor Drives

  • Narimani, Mehdi;Wu, Bin;Zargari, Navid Reza
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1725-1734
    • /
    • 2016
  • This paper presents a novel seven-level (7L) voltage source converter for high-power medium-voltage applications. The proposed topology is an H-bridge connection of two nested neutral-point clamped (NNPC) converters and is referred to as an HNNPC converter. This converter exhibits advantageous features, such as operating over a wide range of output voltages, particularly for 10-15 kV applications, without the need to connect power semiconductors in series; high-quality output voltage; and fewer components relative to other classic seven-level topologies. A novel sinusoidal pulse width modulation technique is also developed for the proposed 7L-HNNPC converter to control flying capacitor voltages. One of the main features of the control strategy is the independent application of control to each arm of the converter to significantly reduce the complexity of the controller. The performance of the proposed converter is studied under different operating conditions via MATLAB/Simulink simulation, and its feasibility is evaluated experimentally on a scaled-down prototype converter.

Design of Transfer Alignment Algorithm with Velocity and Azimuth Matching for the Aircraft Having Wing Flexibility (유연성을 가지는 비행체를 위한 속도/방위각 정합 전달 정렬 알고리즘 설계)

  • Suktae Kang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.214-226
    • /
    • 2023
  • A transfer alignment is used to initialize, align, and calibrate a SINS(Slave INS) using a MINS(Master INS) in motion. This paper presents an airborne transfer alignment with velocity and azimuth matching to estimate inertial sensor biases under the wing flexure influence. This study also considers the lever arm, time delay and relative orientation between MINS and SINS. The traditional transfer alignment only uses velocity matching. In contrast, this paper utilizes the azimuth matching to prevent divergence of the azimuth when the aircraft is stationary or quasi-stationary since the azimuth is less affected by the wing flexibility. The performance of the proposed Kalman filter is analyzed using two factors; one is the estimation performance of gyroscope and accelerometer bias and the other is comparing aircraft dynamics and attitude covariance. The performance of the proposed filter is verified using a long term flight test. The test results show that the proposed scheme can be effectively applied to various platforms that require airborne transfer alignment.

Mapping between Musculoskeletal Patient-Reported Outcome Measures and KCF: Physical Therapy Perspective (근육뼈대계 환자보고식 결과 측정과 KCF의 연결: 물리치료 중심으로)

  • Ju-Min Song
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.19 no.1
    • /
    • pp.143-154
    • /
    • 2024
  • PURPOSE: The present study was conducted to improve the understanding of the Korean Standard Functional, Disability, and Health Classification (KCF) and its ease of use in the clinical domain of the musculoskeletal system by comparing, analyzing, and linking the KCF codes with items from patient-reported outcome measures (PROMs), which are currently mainly used to evaluate patients with neck, shoulder, waist, and knee pain. METHODS: The items of the most widely used PROMs, the Neck Disability Index (NDI), Disabilities of the Arm, Shoulder, and Hand (DASH) scores, Oswestry Disability Index (ODI), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and the codes of the KCF were linked by two experts according to the linking rules. RESULTS: The concordance between the items of each of the PROMs and the KCF code linked by the two experts was NDI,86.4%86.4%, DASH 83.3%, ODI 92.0%, and WOMAC 80.7%. The NDI, DASH, and WOMAC indexes were found to comprise items corresponding to physical function, activity, and participation areas, and were linked to 22, 43, and 31 KCF codes, respectively. In addition to these two areas, the ODI included items related to environmental factors and was linked to 25 codes (duplicated codes are treated as one). CONCLUSION: This research can be used by adding the KCF code to the questions of the currently used evaluation tool. This coding can be easily applied and will contribute to the easy understanding of the KCF.

Simplified Cubature Kalman Filter for Reducing the Computational Burden and Its Application to the Shipboard INS Transfer Alignment

  • Cho, Seong Yun;Ju, Ho Jin;Park, Chan Gook;Cho, Hyeonjin;Hwang, Junho
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.4
    • /
    • pp.167-179
    • /
    • 2017
  • In this paper, a simplified Cubature Kalman Filter (SCKF) is proposed to reduce the computation load of CKF, which is then used as a filter for transfer alignment of shipboard INS. CKF is an approximate Bayesian filter that can be applied to non-linear systems. When an initial estimation error is large, convergence characteristic of the CKF is more stable than that of the Extended Kalman Filter (EKF), and the reliability of the filter operation is more ensured than that of the Unscented Kalman Filter (UKF). However, when a system degree is large, the computation amount of CKF is also increased significantly, becoming a burden on real-time implementation in embedded systems. A simplified CKF is proposed to address this problem. This filter is applied to shipboard inertial navigation system (INS) transfer alignment. In the filter design for transfer alignment, measurement type and measurement update rate should be determined first, and if an application target is a ship, lever-arm problem, flexure of the hull, and asynchronous time problem between Master Inertial Navigation System (MINS) and Slave Inertial Navigation System (SINS) should be taken into consideration. In this paper, a transfer alignment filter based on SCKF is designed by considering these problems, and its performance is validated based on simulations.

SOC Bus Transaction Verification Using AMBA Protocol Checker

  • Lee, Kab-Joo;Kim, Si-Hyun;Hwang, Hyo-Seon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.2
    • /
    • pp.132-140
    • /
    • 2002
  • This paper presents an ARM-based SOC bus transaction verification IP and the usage experiences in SOC designs. The verification IP is an AMBA AHB protocol checker, which captures legal AHB transactions in FSM-style signal sequence checking routines. This checker can be considered as a reusable verification IP since it does not change unless the bus protocol changes. Our AHB protocol checker is designed to be scalable to any number of AHB masters and reusable for various AMBA-based SOC designs. The keys to the scalability and the reusability are Object-Oriented Programming (OOP), virtual port, and bind operation. This paper describes how OOP, virtual port, and bind features are used to implement AHB protocol checker. Using the AHB protocol checker, an AHB simulation monitor is constructed. The monitor checks the legal bus arbitration and detects the first cycle of an AHB transaction. Then it calls AHB protocol checker to check the expected AHB signal sequences. We integrate the AHB bus monitor into Verilog simulation environment to replace time-consuming visual waveform inspection, and it allows us to find design bugs quickly. This paper also discusses AMBA AHB bus transaction coverage metrics and AHB transaction coverage analysis. Test programs for five AHB masters of an SOC, four channel DMAs and a host interface unit are executed and transaction coverage for DMA verification is collected during simulation. These coverage results can be used to determine the weak point of test programs in terms of the number of bus transactions occurred and guide to improve the quality of the test programs. Also, the coverage results can be used to obtain bus utilization statistics since the bus cycles occupied by each AHB master can be obtained.

Multi-standard Video Codec on Embedded System (임베디드 시스템에서의 다중 표준 영상 코덱)

  • Kim, Ki-Chul;Kim, Min
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.4
    • /
    • pp.214-221
    • /
    • 2003
  • This paper shows an implementation of video codec (coder/decoder) on an embedded system. The video codec supports both H.261 and H.263 standards. For efficient real-time processing, the video codec is partitioned into a software module and a hardware module. Both modules are codesigned on an embedded system. The software module is processed on a real-time operating system and a RISC processor. It cooperates with the hardware module to compress and decompress images in real time. AMBA (Advanced Microcontroller Bus Architecture) AHB (Advanced High-performance Bus) is used as the system bus. The hardware module works both as AHB masters and as AHB slaves. The encoder part of the hardware module operates in a pipelines mode to compress images in real time. The video codec compresses 15 CIF frames and simultaneously decompresses 15 CIF frames in a second according to H.261 or H.263 standard at 33 MHz frequency.