• Title/Summary/Keyword: Arm Part

Search Result 341, Processing Time 0.033 seconds

HW/SW co-design of H.264/AVC Decoder using ARM-Excalibur (ARM-Excalibur를 이용한 H.264/AVC 디코더의 HW/SW 병행 설계)

  • Jung, Jun-Mo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1480-1483
    • /
    • 2009
  • In this paper, the hardware(HW) and software(SW) co-design methodology of H.264/AVC decoder using ARM-Excalibur is proposed. The SoC consists of embedded processor, memory, peripheral device and logic circuits. Recently, the co-design method which designs simultaneously HW and SW part is a new paradigm in SoC design. Because the optimization for partitioning the SoC system is very difficult, the verification must be performed earlier in design flow. We designed the H.264 and AVC Decoder using co-design method. It is shown that, for the proposed co-design method, the performance improvements can be obtained.

Analysis on the Kinematics and Dynamics of Human Arm Movement Toward Upper Limb Exoskeleton Robot Control - Part 2: Combination of Kinematic and Dynamic Constraints (상지 외골격 로봇 제어를 위한 인체 팔 동작의 기구학 및 동역학적 분석 - 파트 2: 제한조건의 선형 결합)

  • Kim, Hyunchul;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.875-881
    • /
    • 2014
  • The redundancy resolution of the seven DOF (Degree of Freedom) upper limb exoskeleton is key to the synchronous motion between a robot and a human user. According to the seven DOF human arm model, positioning and orientating the wrist can be completed by multiple arm configurations that results in the non-unique solution to the inverse kinematics. This paper presents analysis on the kinematic and dynamic aspect of the human arm movement and its effect on the redundancy resolution of the seven DOF human arm model. The redundancy of the arm is expressed mathematically by defining the swivel angle. The final form of swivel angle can be represented as a linear combination of two different swivel angles achieved by optimizing two cost functions based on kinematic and dynamic criteria. The kinematic criterion is to maximize the projection of the longest principal axis of the manipulability ellipsoid of the human arm on the vector connecting the wrist and the virtual target on the head region. The dynamic criterion is to minimize the mechanical work done in the joint space for each of two consecutive points along the task space trajectory. The contribution of each criterion on the redundancy was verified by the post processing of experimental data collected with a motion capture system. Results indicate that the bimodal redundancy resolution approach improved the accuracy of the predicted swivel angle. Statistical testing of the dynamic constraint contribution shows that under moderate speeds and no load, the dynamic component of the human arm is not dominant, and it is enough to resolve the redundancy without dynamic constraint for the realtime application.

The Effect of Yoga and Pilates Training on Obesity Indexes, muscle mass in each body part and Physical Fitness in Male College Students (요가와 필라테스 트레이닝이 비만 남자대학생의 비만도, 신체 부위별 근육량 및 체력에 미치는 영향)

  • Kim, Ji-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.5888-5896
    • /
    • 2015
  • The purpose of this study was to examine the effect of Yoga and Pilates training on the obesity indexes, muscle mass in each body part and physical fitness of male college students in an effort to provide some clinical information on exercise prescription. The subjects in this study were 20 selected obese male students. A yoga group and a pilates group were organized with 10 students each, and the training was provided for 12 weeks, 5 times a week, 90 minutes each. The findings of the study were as follows: First, both of yoga and pilates made significant differences to obesity indexes(an increase in skeletal muscle mass, a decrease in BMI, a decrease in body fat rate and a decrease in WHR), to muscle mass in each body part(an increase in muscle mass on the right arm, left arm, trunk, right leg, and left leg), and to physical fitness(an increase in lower extremity muscle strength, muscular endurance, flexibility, left balance and right balance). Second, pilates exercised a more signifiant influence than yoga on an increase in skeletal muscle mass, the improvement of muscle mass in each body part(an increase in muscle mass on the right arm, left arm, trunk, right leg and left leg), and the improvement of balance(left and right). Third, yoga had a more significant impact on a decrease in BMI, body fat rate and WHR. Given the findings of the study, yoga and pilates seem to be efficient exercise programs to improve the obesity indexes of obese male college students and promote their health.

Debugging of TTP(Train Tilting Processor) In Use The Embedded System (임베디드 시스템을 이용한 틸팅 제어 시스템(T.T.P)에 관한 연구)

  • Song, Yong-Soo;Shin, Seung-Kwon;Lee, Su-Gil;Han, Seong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2625-2627
    • /
    • 2004
  • Recently many technology of the T.T.P.(Train Tilting Processor) has been introduced for an efficient real-time operating system. but the problems of testing increasing complex digital integrated system continue to challenge the design and test community. Design main processor part that can be used on railroad synthesis control part by ARM CORE chip.

  • PDF

Design of Excavator Boom Structure Based on Fatigue Strength of Weldment(I) (용접부 피로강도를 고려한 굴삭기 붐 구조물 설계(I))

  • Park, Sang-Chul
    • Journal of Welding and Joining
    • /
    • v.28 no.5
    • /
    • pp.58-63
    • /
    • 2010
  • The purpose of this study is to develop improved boom structures with reliable fatigue strength of weldment and lower production cost. For that purpose, multibody dynamic analysis was performed to evaluate forces acting on arm & boom cylinders and joints of boom structure during operation of an excavator for three working postures, then stress analysis was made to investigate stress distribution around diaphragms at the bottom plate of boom structures which was known to be susceptible to fatigue failures of welded joints, and finally boom structure with optimum arrangement of diaphragms was proposed. This work basically consists of the following two parts: part 1 focuses on multibody dynamic analysis of excavators during operation and part 2 includes evaluations of fatigue strength of welded joints for modified boom structures.

Design of Excavator Boom Structure Based on Fatigue Strength of Weldment(II) (용접부 피로강도를 고려한 굴삭기 붐 구조물 설계(II))

  • Park, Sang-Chul
    • Journal of Welding and Joining
    • /
    • v.29 no.4
    • /
    • pp.61-66
    • /
    • 2011
  • The purpose of this study is to develop improved boom structures with reliable fatigue strength of weldment and lower production cost. For that purpose, multi-body dynamic analysis was performed to evaluate forces acting on arm & boom cylinders and joints of boom structure during operation of an excavator for three working postures, then stress analysis was made to investigate stress distribution around diaphragms at the bottom plate of boom structures which was known to be susceptible to fatigue failures of welded joints, and finally boom structures with optimum arrangement of diaphragms was proposed. This work mainly consists of the following two parts: part 1 focuses on multi-body dynamic analysis of excavators during operation and part 2 includes evaluations of fatigue strength of welded joints for modified boom structures.

A Clothing Ergonomics Studyon the Seelve form Variation and the Clothing Pressure Variation According to Arm Movement (동작에 따른 상지형태 변화와 의복에 대한 피복인간공학적 연구(I))

  • Kim Hae-Kyung;Kim Soon-Ja;Cho Jung Mee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.12 no.2 s.27
    • /
    • pp.237-248
    • /
    • 1988
  • To access the appropriate height of sleeve cap which is required for the basic sleeve pattern according to arm movements, plaster gypsum experiment was performed. Arm movements were 5types ($0^{\circ},\;45^{\circ},\;90^{\circ},\;135^{\circ},\;180^{\circ}$) to the vertical directions in the front. The appropriateness of the pattern was analyzed by measuring clothing pressure. The results obtained were as follows: 1. Increasing the movement angle, sleeve width increased but height of sleeve cap and armhole girth decreased. 2. Increasing the movement angle, the acromion moved to the front part of bodice. 3. On the basis of the result of the height of sleeve cap, the $\frac{AH}{4} +2.5cm$ sleeve basic 4 pattern is suitable for the direction $M_1(0^{\circ}),\;M_2(45^{\circ})$, and the $\frac{AH}{5}$sleeve basic pattern is suitable for the direction $M_3(90^{\circ}),\;M_4(135^{\circ})$, and $M_5(180^{\circ})$. 4. As the movement angle and height of sleevecap increased, the part which receive high pressure increased and the difference between the hightest and the lowest clothing pressure increased. 5. By the variation of movement angle and height of sleevecap, clothing pressure of upperarm was affected more than that of shoulder blade. 6. The clothing pressure of upperarm and shoulder blades were more affected by the height of sleeve cap than the ease of breast area. 7. Considering the clothing pressure of various arm movement, the most appropriate height of sleeve cap for $M_1(0^{\circ}),\;M_2(45^{\circ})$ positions was to use the $\frac{AH}{4}$+2.5cm, and for $M_3(90^{\circ}),\;M_4(135^{\circ})$, and $M_5(180^{\circ})$, was $\frac{AH}{5}$.

  • PDF

Analysis on Kinematics and Dynamics of Human Arm Movement Toward Upper Limb Exoskeleton Robot Control Part 1: System Model and Kinematic Constraint (상지 외골격 로봇 제어를 위한 인체 팔 동작의 기구학 및 동역학적 분석 - 파트 1: 시스템 모델 및 기구학적 제한)

  • Kim, Hyunchul;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1106-1114
    • /
    • 2012
  • To achieve synchronized motion between a wearable robot and a human user, the redundancy must be resolved in the same manner by both systems. According to the seven DOF (Degrees of Freedom) human arm model composed of the shoulder, elbow, and wrist joints, positioning and orientating the wrist in space is a task requiring only six DOFs. Due to this redundancy, a given task can be completed by multiple arm configurations, and thus there exists no unique mathematical solution to the inverse kinematics. This paper presents analysis on the kinematic and dynamic aspect of the human arm movement and their effect on the redundancy resolution of the human arm based on a seven DOF manipulator model. The redundancy of the arm is expressed mathematically by defining the swivel angle. The final form of swivel angle can be represented as a linear combination of two different swivel angles achieved by optimizing different cost functions based on kinematic and dynamic criteria. The kinematic criterion is to maximize the projection of the longest principal axis of the manipulability ellipsoid for the human arm on the vector connecting the wrist and the virtual target on the head region. The dynamic criterion is to minimize the mechanical work done in the joint space for each two consecutive points along the task space trajectory. As a first step, the redundancy based on the kinematic criterion will be thoroughly studied based on the motion capture data analysis. Experimental results indicate that by using the proposed redundancy resolution criterion in the kinematic level, error between the predicted and the actual swivel angle acquired from the motor control system is less than five degrees.

Design of a Small Form Factor Swing Arm type Actuator using Design of Experiments (실험계획법을 이용한 초소형 스윙암 액추에이터의 설계)

  • Park Chul;Yoo Jeong-Hoon;Park No-Ceol
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.813-819
    • /
    • 2006
  • The state of the art for the design of swing ann actuators for optical disc drives is to obtain the high efficient dynamic characteristics, especially for the small size for the mobile information devices, It is affected by the need of consumers who wants the portable digital storage devices maintaining highly functional and removable characteristics of the optical disk drive (ODD). As a necessary consequence, the need of the small form factor (SFF) storage device has been considered as an important part in the information storage technology. In this paper. we suggest a new conceptual miniaturized swing arm type actuator that has high efficient dynamic characteristics as well as satisfies the sensitivity and the heat emission requirements for the SFF-ODD. It also uses a tracking electromagnetic (EM) circuit for a focusing motion. Due to the size constraint, the thermal problem of optical head arises; therefore, we design an efficiently heat emitted structure for the actuator.

  • PDF

Measurement uncertainty evaluation in FaroArm-machine using the bootstrap method

  • Horinov, Sherzod;Shaymardanov, Khurshid;Tadjiyev, Zafar
    • Journal of Multimedia Information System
    • /
    • v.2 no.3
    • /
    • pp.255-262
    • /
    • 2015
  • The modern manufacturing systems and technologies produce products that are more accurate day by day. This can be reached mainly by improvement the manufacturing process with at the same time restricting more and more the quality specifications and reducing the uncertainty in part. The main objective an industry becomes to lower the part's variability, since the less variability - the better is product. One of the part of this task is measuring the object's uncertainty. The main purpose of this study is to understand the application of bootstrap method for uncertainty evaluation. Bootstrap method is a collection of sample re-use techniques designed to estimate standard errors and confidence intervals. In the case study a surface of an automobile engine block - (Top view side) is measured by Coordinate Measuring Machine (CMM) and analyzed for uncertainty using Geometric Least Squares in complex with bootstrap method. The designed experiment is composed by three similar measurements (the same features in unique reference system), but with different points (5, 10, 20) concentration at each level. Then each cloud of points was independently analyzed by means of non-linear Least Squares, after estimated results have been reported. A MatLAB software tool used to generate new samples using bootstrap function. The results of the designed experiment are summarized and show that the bootstrap method provides the possibility to evaluate the uncertainty without repeating the Coordinate Measuring Machine (CMM) measurements many times, i.e. potentially can reduce the measuring time.