• Title/Summary/Keyword: Arginine deiminase (ADI)

Search Result 3, Processing Time 0.017 seconds

Anti-inflammatory Effects of Recombinant Arginine Deiminase Originating from Lactococcus lactis ssp. lactis ATCC 7962

  • Kim, Jong-Eun;Hur, Haeng-Jeon;Lee, Ki-Won;Lee, Hyong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.9
    • /
    • pp.1491-1497
    • /
    • 2007
  • Arginine deiminase (ADI, E.C. 3.5.3.6), one of the arginine deprivation enzymes, exhibits anticarcinogenic activities. The present study investigated the anti-inflammatory activities of the purified recombinant ADI originating from Lactococcus lactis ssp. lactis ATCC7962 (LADI). LADI dose-dependently inhibited lipopolysaccharide (LPS)-induced upregulation of inducible nitric oxide synthase and the production of nitric oxide in RAW 264.7 murine macrophages. The induction of cyclooxygenase-2 expression and subsequent production of prostaglandin $E_2$ by LPS was also attenuated by LADI treatment. Moreover, LADI inhibited the production of interleukin-6 in LPS-stimulated RAW 264.7 macrophages. These results indicate that LADI exerts anti-inflammatory effects, which may in part explain its chemopreventive potential.

Arginine Deiminase Enhances MCF-7 Cell Radiosensitivity by Inducing Changes in the Expression of Cell Cycle-related Proteins

  • Park, Hwan;Lee, Jun-Beom;Shim, Young-Jun;Shin, Yong-Jae;Jeong, Seong-Yun;Oh, Junseo;Park, Gil-Hong;Lee, Kee-Ho;Min, Bon-Hong
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.305-311
    • /
    • 2008
  • After successful clinical application, arginine deiminase (ADI) has been proposed to be a new cancer therapeutic. In the present study, we examined the effect of ADI in combination with ionizing radiation (IR) on MCF-7 cell growth and clonogenic cell death. Cell growth was inhibited by IR in a dose-dependent manner and ADI enhanced the radiosensitivity. ADI itself did not suppress the growth of MCF-7 cells due to the high level of expression of argininosuccinate synthetase (ASS), which convert citrulline, a product of arginine degradation by ADI, to arginine. Previously, it was suggested that ammonia, another product of arginine degradation by ADI, is the main cause of the growth inhibition of irradiated hepatoma cells contaminated with ADI-expressing mycoplasma [van Rijn et al. (2003)]. However, we found that ammonia is not the only factor that enhances radiosensitivity, as enhancement was also observed in the absence of ammonia. In order to identify the enhancing effect, levels of ASS and proteins related to the cell cycle were examined. ASS was unchanged by ADI plus IR, but p21 (a CDK inhibitor) was upregulated and c-Myc downregulated. These findings indicate that changes in the expressions of cell cycle proteins are involved in the enhancement of radiosensitivity by ADI. We suggest that ADI is a potential adjunct to cancer therapy.

Inhibition of LPS-induced nitric oxide production by transduced Tat-arginine deiminase fusion protein in Raw 264.7 cells

  • Lee, Min-Jung;Kim, Dae-Won;Lee, Yeom-Pyo;Jeong, Hoon-Jae;Kang, Hye-Won;Shin, Min-Jae;Sohn, Eun-Jeong;Kim, Mi-Jin;Jang, Sang-Ho;Kang, Tae-Cheon;Won, Moo-Ho;Min, Bon-Hong;Cho, Sung-Woo;Lee, Kil-Soo;Park, Jin-Seu;Eum, Won-Sik;Choi, Soo-Young
    • BMB Reports
    • /
    • v.42 no.5
    • /
    • pp.286-292
    • /
    • 2009
  • Arginine deiminase (ADI), an arginine-degrading enzyme, has anti-proliferative and anti-tumor activities and is capable of inhibiting the production of nitric oxide (NO). Modulation of nitric oxide (NO) production is considered a promising approach for the treatment of various diseases including cancer, inflammation and neuronal disorders. In this study, an ADI gene was fused with an HIV-1 Tat peptide in a bacterial expression vector to produce an genetic in-frame Tat-ADI fusion protein. When added exogenously to the culture media, the expressed and purified Tat-ADI fusion proteins were efficiently transduced into macrophage Raw 264.7 cells in a time- and dose-dependent manner. Furthermore, transduced Tat-ADI fusion proteins markedly increased cell viability in cells treated with lipopolysaccharide (LPS). This increase in viability was mediated by an inhibition of NO production. These results suggest that this Tat-ADI fusion protein can be used in protein therapies of NO-related disorders such as cancer, inflammation and neuronal diseases.