DOI QR코드

DOI QR Code

Inhibition of LPS-induced nitric oxide production by transduced Tat-arginine deiminase fusion protein in Raw 264.7 cells

  • Lee, Min-Jung (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, College of Medicine, Hallym University) ;
  • Kim, Dae-Won (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, College of Medicine, Hallym University) ;
  • Lee, Yeom-Pyo (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, College of Medicine, Hallym University) ;
  • Jeong, Hoon-Jae (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, College of Medicine, Hallym University) ;
  • Kang, Hye-Won (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, College of Medicine, Hallym University) ;
  • Shin, Min-Jae (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, College of Medicine, Hallym University) ;
  • Sohn, Eun-Jeong (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, College of Medicine, Hallym University) ;
  • Kim, Mi-Jin (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, College of Medicine, Hallym University) ;
  • Jang, Sang-Ho (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, College of Medicine, Hallym University) ;
  • Kang, Tae-Cheon (Department of Anatomy and Neurobiology, College of Medicine, Hallym University) ;
  • Won, Moo-Ho (Department of Anatomy and Neurobiology, College of Medicine, Hallym University) ;
  • Min, Bon-Hong (Department of Pharmacology, College of Medicine, Korea University) ;
  • Cho, Sung-Woo (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine) ;
  • Lee, Kil-Soo (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, College of Medicine, Hallym University) ;
  • Park, Jin-Seu (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, College of Medicine, Hallym University) ;
  • Eum, Won-Sik (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology) ;
  • Choi, Soo-Young (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology)
  • Published : 2009.05.31

Abstract

Arginine deiminase (ADI), an arginine-degrading enzyme, has anti-proliferative and anti-tumor activities and is capable of inhibiting the production of nitric oxide (NO). Modulation of nitric oxide (NO) production is considered a promising approach for the treatment of various diseases including cancer, inflammation and neuronal disorders. In this study, an ADI gene was fused with an HIV-1 Tat peptide in a bacterial expression vector to produce an genetic in-frame Tat-ADI fusion protein. When added exogenously to the culture media, the expressed and purified Tat-ADI fusion proteins were efficiently transduced into macrophage Raw 264.7 cells in a time- and dose-dependent manner. Furthermore, transduced Tat-ADI fusion proteins markedly increased cell viability in cells treated with lipopolysaccharide (LPS). This increase in viability was mediated by an inhibition of NO production. These results suggest that this Tat-ADI fusion protein can be used in protein therapies of NO-related disorders such as cancer, inflammation and neuronal diseases.

Keywords

References

  1. Zuniga, M., Perez. G. and Gonzalez-Candelas, F. (2002) Evolution of arginine deiminase (ADI) pathway genes. Mol. Phylogenet. Evol. 25, 429-444 https://doi.org/10.1016/S1055-7903(02)00277-4
  2. Cumin, R., Glansdorff, N., Pierard, A. and Stalon, V. (1986) Biosynthesis and metabolism of arginine in bacteria. Microbiol. Rev. 50, 314-352
  3. Gong, H., Zolzer, F., von Recklinghausen, G., Havers, W. and Schweigerer, L. (2000) Arginine deiminase inhibits proliferation of human leukemia cells more potently than asparaginase by inducing cell cycle arrest and apoptosis. Leukemia 14, 826-829 https://doi.org/10.1038/sj.leu.2401763
  4. Komada, Y., Zhang, X. L., Zhou, Y. W., Ido, M. and Azuma, E. (1997) Apoptotic cell death of human T lymphoblastoid cells induced by arginine deiminase. Int. J. Hematol. 65, 129-141 https://doi.org/10.1016/S0925-5710(96)00538-5
  5. Takaku, H., Takase, M., Abe, S., Hayashi, H. and Miyazaki, K. (1992) In vivo anti-tumor activity of arginine deiminase purified from Mycoplasma arginini. Int. J. Cancer 51, 244-249 https://doi.org/10.1002/ijc.2910510213
  6. Ensor, C. M., Holtsberg, F. W., Bomalaski, J. S. and Clark, M. A. (2002) Pegylated arginine deiminase (ADI-SSPEG 20,000 MW) inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Cancer Res. 62, 5443-5450
  7. Kang, S. W., Kang, H., Park, I. S., Choi, S. H., Shin, K. H., Chun, Y. S., Chun, B. G. and Min, B. H. (2000) Cytoprotective effect of arginine deiminase on taxol-induced apoptosis in DU145 human prostate cancer cells. Mol. Cells 10, 331-337
  8. Noh, E. J., Kang, S. W., Shin, Y. J., Kim, D. C., Park, I. S., Kim, M. Y., Chun, B. G. and Min, B. H. (2002) Characterization of mycoplasma arginine deiminase expressed in E. coli and its inhibitory regulation of nitric oxide synthesis. Mol. Cells 13, 137-143
  9. Muller, H. J. and Boos, J. (1998) Use of L-asparaginase in childhood ALL. Crit. Rev. Oncol. Hematol. 28, 97-113 https://doi.org/10.1016/S1040-8428(98)00015-8
  10. Curley, S. A., Bomalaski, J. S., Ensor, C. M., Holtsberg, F. W. and Clark, M. A. (2003) Regeneration of hepatocellular cancer in a patient treated with arginine deiminase. Hepatogastroenterol. 50, 1214-1216
  11. Shen, L. J., Beloussow, K. and Shen, W. C. (2006) Modulation of arginine metabolic pathways as the potential anti-tumor mechanism of recombinant arginine deimiase. Cancer Lett. 231, 30-35 https://doi.org/10.1016/j.canlet.2005.01.007
  12. Ni, Y., Schwaneberg, U. and Sun, Z. H. (2008) Arginine deiminase, a potential anti-tumor drug. Cancer Lett. 261, 1-11 https://doi.org/10.1016/j.canlet.2007.11.038
  13. Yu, H. H., Wu, F. L., Lin, S. E. and Shen, L. J. (2008) Recombinant arginine deiminase reduces inducible nitric oxide synthase iNOS-mediated neurotoxicity in a coculture of neurons and microglia. J. Neurosci. Res. 86, 2963-2972 https://doi.org/10.1002/jnr.21740
  14. Colton, C. A., Vitek, M. P., Wink, D. A., Xu, Q., Cantillana, V., Previti, M. L., van Nostrand, W. E., Weinberg, J. B. and Dawson, H. (2006) NO synthase 2 (NOS2) deletion promotes multiple pathologies in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. U.S.A. 103, 12867-12872 https://doi.org/10.1073/pnas.0601075103
  15. Dawson, V. L., Kizushi, V. M., Huang, P. L., Snyder, S. H. and Dawson, T. M. (1996) Resistance to neurotoxicity in cortical cultures from neuronal nitric oxide synthase-deficient mice. J. Neurosci. 16, 2479-2487
  16. Good, P. F., Hsu, A., Werner, P., Perl, D. P. and Olanow, C. W. (1998) Protein nitration in Parkinson’s disease. J. Neuropathol. Exp. Neurol. 57, 338-342 https://doi.org/10.1097/00005072-199804000-00006
  17. Huang, Z., Huang, P. L., Panahian, N., Dalkara, T., Fishman M. C. and Moskowitz, M. A. (1994) Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265, 1883-1885 https://doi.org/10.1126/science.7522345
  18. Iadecola, C., Zhang, F., Casey, R., Nagayama, M. and Ross, M. E. (1997) Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J. Neurosci. 17, 9157-9164
  19. Martin, L. J., Liu, Z., Chen, K., Price, A. C., Pan, Y., Swa by, J. A. and Golden, W. C. (2007) Motor neuron degeneration in amyotrophic lateral sclerosis mutant superoxide dismutase-1 transgenic mice: mechanism of mitochondriopathy and cell death. J. Comp. Neurol. 500, 20-46 https://doi.org/10.1002/cne.21160
  20. Amin, A. R., Attur, M. and Abramson, S. B. (1999) Nitric oxide synthase and cyclooxygenases: distribution, regulation, and intervention in arthritis. Curr. Opin. Rheumatol. 11, 202-209 https://doi.org/10.1097/00002281-199905000-00009
  21. Rietschel, E. T., Kirikae, T., Schade, F. U., Mamat, U., Schmidt, G., Loppnow, H., Ulmer, A. J., Zahringer, U., Seydel, U. and Di Padova, F. (1994) Bacterial endotoxin: molecular relationships and structure to activity and function. FASEB J. 8, 217-225 https://doi.org/10.1096/fasebj.8.2.8119492
  22. Morrison, D. C. and Ryan, J. L. (1987) Endotoxins and disease mechanisms. Annu. Rev. Med. 38, 417-432 https://doi.org/10.1146/annurev.me.38.020187.002221
  23. Adams, D. O. and Hamilton, T. A. (1984) The cell biology of macrophage activation. Annu. Rev. Immunol. 2, 283-318 https://doi.org/10.1146/annurev.iy.02.040184.001435
  24. Wadia, J. and Dowdy, S. F. (2002) Protein transduction technology. Curr. Opin. Biotechnol. 13, 52-56 https://doi.org/10.1016/S0958-1669(02)00284-7
  25. Morris, M. C., Depollier, J., Mery, J., Heitz, F. and Divita, G. (2001) A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat. Biotechnol. 19, 1173-1176 https://doi.org/10.1038/nbt1201-1173
  26. Schwarze, S. R., Ho, A., Vocero-Akbani, A. and Dowdy, S. R. (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285, 1569-1572 https://doi.org/10.1126/science.285.5433.1569
  27. Prochiantz, A. (2000) Messenger proteins: homeoproteins, TAT and others. Curr. Opin. Cell Biol. 12, 400-406 https://doi.org/10.1016/S0955-0674(00)00108-3
  28. Kwon, H. Y., Eum, W. S., Jang, H. W., Kang, J. H., Ryu, J. Y., Lee, B. R., Jin, L. H., Park, J. and Choi, S. Y. (2000) Transduction of Cu,Zn-superoxide dismutase mediated by an HIV-1 Tat protein basic domain into mammalian cells. FEBS Lett. 485, 163-167 https://doi.org/10.1016/S0014-5793(00)02215-8
  29. Eum W. S., Choung, I. S., Li, M. Z., Kang, J. H., Kim, D. W., Park, J., Kwon, H. Y. and Choi, S. Y. (2004) HIV-1 Tat mediated protein transduction of Cu,Zn superoxide dismutase into pancreatic β cells in vitro and in vivo. Free Radic. Biol. Med. 37, 339-349 https://doi.org/10.1016/j.freeradbiomed.2004.04.036
  30. Choi, H. S., An, J. J., Kim, S. Y., Lee, S. H., Kim, D. W., Yoo, K. Y., Won, M. H., Kang, T. C., Kwon, H. J., Kang, J. H., Cho, S. W., Kwon, O. S., Park, J., Eum, W. S. and Choi, S. Y. (2006) PEP-1-SOD fusion protein efficiently protects against paraquat-induced dopaminergic neuron damage in a Parkinson disease mouse model. Free Radic. Biol. Med. 41, 1058-1068 https://doi.org/10.1016/j.freeradbiomed.2006.06.006
  31. Eum, W. S., Kim D. W., Hwang, I. K., Yoo, K. Y., Kang, T. C., Jang, S. H., Choi, H. S., Choi, S. H., Kim, Y. H., Kim, S. Y., Kwon, H. Y., Kang, J. H., Kwon, O. S., Cho, S. W., Lee, K. S., Park, J., Won, M. H. and Choi, S. Y. (2004) In vivo protein transduction: biologically active intact PEP-1-superoxide dismutase fusion protein efficiently protects against ischemic insult. Free Radic. Biol. Med. 37, 1656-1669 https://doi.org/10.1016/j.freeradbiomed.2004.07.028
  32. Jeong, M. S., Kim, D. W., Lee, M. J., Lee, Y. P., Kim, S. Y., Lee, S. H., Jang, S. H., Lee, K. S., Park, J., Kang, T. C., Cho, S. W., Kwon, O. S., Eum, W. S. and Choi, S. Y. (2008) HIV-1 Tat-mediated protein transduction of human brain creatine kinase into PC12 cells. BMB reports 41, 537-541 https://doi.org/10.5483/BMBRep.2008.41.7.537
  33. Lee, Y. P., Kim, D. W., Lee, M. J., Jeong, M. S., Kim, S. Y., Lee, S. H., Jang, S. H., Park, J., Kang, T. C., Won, M. H., Cho, S. W., Kwon, O. S., Eum, W. S. and Choi, S. Y. (2008) Human brain pyridoxal-5'-phosphate phosphatase (PLPP): protein transduction of PEP-1-PLPP into PC12 cells. BMB reports 41, 408-413 https://doi.org/10.5483/BMBRep.2008.41.5.408
  34. Kim, D. W., Kim, S. Y., Lee, S. H., Lee, Y. P., Lee, M. J., Jeong, M. S., Jang, S. H., Park, J., Lee, K. S., Kang, T. C., Won, M. H., Cho, S. W., Kwon, O. S., Eum, W. S. and Choi, S. Y. (2008) Protein transduction of an antioxidant enzyme: subcellular localization of superoxide dismutase fusion protein in cells. BMB reports 41, 170-175 https://doi.org/10.5483/BMBRep.2008.41.2.170
  35. Richard, J. P., Melikov, K., Vives, E., Rmos, C., Vereure, B., Gait, M. J., Chernomordik, L. V. and Lebleu, B. (2003) Cell penetrating peptides: a reevaluaation of the mechanism of cellular uptake. J. Biol. Chem. 278, 585-590 https://doi.org/10.1074/jbc.M209548200
  36. Cashman, S. M., Morris, D. J., and Kuman-Singh, R. (2003). Evidence of protein transduction but not intracellular by protein fused to HIV Tat in retinal cell culture and in vivo. Mol. Ther. 8, 130-142 https://doi.org/10.1016/S1525-0016(03)00131-X
  37. Dillon, B. J., Holtsberq, F. W., Ensor, C. M., Bomalaski, J. S. and Clark, M. A. (2002) Biochemical characterization of the arginine degrading enzymes arginase and arginine deiminase and their effect on nitric oxide production. Med. Sci. Monit. 8, BR248-253
  38. Shen, L. J., Lin, W. C., Beloussow, K. and Shen, W. C. (2003) Resistance to the anti-proliferative activity of recombinant arginine deiminase in cell culture correlates with the endogenous enzyme, argininosuccinate synthetase. Cancer Lett. 191, 165-170 https://doi.org/10.1016/S030-43835(02)00693-6
  39. Shen, L. J. and Shen, W. C. (2006) Drug evaluation: ADIPEG- 20-a PEGylated arginine deiminase for arginine-auxotrophic cencers. Curr. Opin. Mol. Ther. 8, 240-248
  40. Gong, H., Pottgen, C., Stuben, G., Havers, W., Stuschke, M. and Schweigerer, L. (2003) Arginine deiminase and other antiangiogenic agents inhibit unfavorable neuroblastoma growth: potentiation by irradiation. Int. J. Cancer 106, 723-728 https://doi.org/10.1002/ijc.11298
  41. van Rijn, J., van den Berg, J., Schipper, R. G., de Jong, S., Cuijpers, V., Verhofstad, A. A. and Teerlink, T. (2004) Induction of hyperammonia in irradiated hepatoma cells: a recapitulation and possible explanation of the phenomenon. Br. J. Cancer 91, 150-152 https://doi.org/10.1038/sj.bjc.6601915
  42. Park, H., Lee, J. B., Shim, Y. J., Shin, Y. J., Jeong, S. Y., Oh, J., Park, G. H., Lee, K. H. and Min, B. H. (2008) Arginine deiminase enhances MCF-7 cell radiosensitivity by inducing changes in the expression of cell cycle-related proteins. Mol. Cells 25, 305-311
  43. Bradford, M. (1976) A rapid and sensitive method for the quantitation of microgram quantities utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  44. Boyde, T. R. and Mohammed, R. (1980) Optimization of conditions for the colorimetic determination of citrulline, using deacetyl monoxime. Anal. Biochem. 107, 424-431 https://doi.org/10.1016/0003-2697(80)90404-2
  45. Misko, T. P., Schilling, R. J., Salvemini, D., Moore, W. M. and Currie, M. G. (1993) A fluorometric assay for the measurement of nitrite in biological samples. Anal Biochem. 214, 11-16 https://doi.org/10.1006/abio.1993.1449
  46. Kim, J. E., Hur, H. J., Lee, K. W. and Lee, H. J. (2007) Anti-inflammatory effects of recombinant arginine deiminase originating from Lactococus lactis ssp.lactis ATCC 7962. J. Microbiol. Biotechnol. 17, 1491-1497

Cited by

  1. Amelioration of streptozotocin-induced diabetes by Agrocybe chaxingu polysaccharide vol.29, pp.4, 2010, https://doi.org/10.1007/s10059-010-0044-9