References
- Zuniga, M., Perez. G. and Gonzalez-Candelas, F. (2002) Evolution of arginine deiminase (ADI) pathway genes. Mol. Phylogenet. Evol. 25, 429-444 https://doi.org/10.1016/S1055-7903(02)00277-4
- Cumin, R., Glansdorff, N., Pierard, A. and Stalon, V. (1986) Biosynthesis and metabolism of arginine in bacteria. Microbiol. Rev. 50, 314-352
- Gong, H., Zolzer, F., von Recklinghausen, G., Havers, W. and Schweigerer, L. (2000) Arginine deiminase inhibits proliferation of human leukemia cells more potently than asparaginase by inducing cell cycle arrest and apoptosis. Leukemia 14, 826-829 https://doi.org/10.1038/sj.leu.2401763
- Komada, Y., Zhang, X. L., Zhou, Y. W., Ido, M. and Azuma, E. (1997) Apoptotic cell death of human T lymphoblastoid cells induced by arginine deiminase. Int. J. Hematol. 65, 129-141 https://doi.org/10.1016/S0925-5710(96)00538-5
- Takaku, H., Takase, M., Abe, S., Hayashi, H. and Miyazaki, K. (1992) In vivo anti-tumor activity of arginine deiminase purified from Mycoplasma arginini. Int. J. Cancer 51, 244-249 https://doi.org/10.1002/ijc.2910510213
- Ensor, C. M., Holtsberg, F. W., Bomalaski, J. S. and Clark, M. A. (2002) Pegylated arginine deiminase (ADI-SSPEG 20,000 MW) inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Cancer Res. 62, 5443-5450
- Kang, S. W., Kang, H., Park, I. S., Choi, S. H., Shin, K. H., Chun, Y. S., Chun, B. G. and Min, B. H. (2000) Cytoprotective effect of arginine deiminase on taxol-induced apoptosis in DU145 human prostate cancer cells. Mol. Cells 10, 331-337
- Noh, E. J., Kang, S. W., Shin, Y. J., Kim, D. C., Park, I. S., Kim, M. Y., Chun, B. G. and Min, B. H. (2002) Characterization of mycoplasma arginine deiminase expressed in E. coli and its inhibitory regulation of nitric oxide synthesis. Mol. Cells 13, 137-143
- Muller, H. J. and Boos, J. (1998) Use of L-asparaginase in childhood ALL. Crit. Rev. Oncol. Hematol. 28, 97-113 https://doi.org/10.1016/S1040-8428(98)00015-8
- Curley, S. A., Bomalaski, J. S., Ensor, C. M., Holtsberg, F. W. and Clark, M. A. (2003) Regeneration of hepatocellular cancer in a patient treated with arginine deiminase. Hepatogastroenterol. 50, 1214-1216
- Shen, L. J., Beloussow, K. and Shen, W. C. (2006) Modulation of arginine metabolic pathways as the potential anti-tumor mechanism of recombinant arginine deimiase. Cancer Lett. 231, 30-35 https://doi.org/10.1016/j.canlet.2005.01.007
- Ni, Y., Schwaneberg, U. and Sun, Z. H. (2008) Arginine deiminase, a potential anti-tumor drug. Cancer Lett. 261, 1-11 https://doi.org/10.1016/j.canlet.2007.11.038
- Yu, H. H., Wu, F. L., Lin, S. E. and Shen, L. J. (2008) Recombinant arginine deiminase reduces inducible nitric oxide synthase iNOS-mediated neurotoxicity in a coculture of neurons and microglia. J. Neurosci. Res. 86, 2963-2972 https://doi.org/10.1002/jnr.21740
- Colton, C. A., Vitek, M. P., Wink, D. A., Xu, Q., Cantillana, V., Previti, M. L., van Nostrand, W. E., Weinberg, J. B. and Dawson, H. (2006) NO synthase 2 (NOS2) deletion promotes multiple pathologies in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. U.S.A. 103, 12867-12872 https://doi.org/10.1073/pnas.0601075103
- Dawson, V. L., Kizushi, V. M., Huang, P. L., Snyder, S. H. and Dawson, T. M. (1996) Resistance to neurotoxicity in cortical cultures from neuronal nitric oxide synthase-deficient mice. J. Neurosci. 16, 2479-2487
- Good, P. F., Hsu, A., Werner, P., Perl, D. P. and Olanow, C. W. (1998) Protein nitration in Parkinson’s disease. J. Neuropathol. Exp. Neurol. 57, 338-342 https://doi.org/10.1097/00005072-199804000-00006
- Huang, Z., Huang, P. L., Panahian, N., Dalkara, T., Fishman M. C. and Moskowitz, M. A. (1994) Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265, 1883-1885 https://doi.org/10.1126/science.7522345
- Iadecola, C., Zhang, F., Casey, R., Nagayama, M. and Ross, M. E. (1997) Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J. Neurosci. 17, 9157-9164
- Martin, L. J., Liu, Z., Chen, K., Price, A. C., Pan, Y., Swa by, J. A. and Golden, W. C. (2007) Motor neuron degeneration in amyotrophic lateral sclerosis mutant superoxide dismutase-1 transgenic mice: mechanism of mitochondriopathy and cell death. J. Comp. Neurol. 500, 20-46 https://doi.org/10.1002/cne.21160
- Amin, A. R., Attur, M. and Abramson, S. B. (1999) Nitric oxide synthase and cyclooxygenases: distribution, regulation, and intervention in arthritis. Curr. Opin. Rheumatol. 11, 202-209 https://doi.org/10.1097/00002281-199905000-00009
- Rietschel, E. T., Kirikae, T., Schade, F. U., Mamat, U., Schmidt, G., Loppnow, H., Ulmer, A. J., Zahringer, U., Seydel, U. and Di Padova, F. (1994) Bacterial endotoxin: molecular relationships and structure to activity and function. FASEB J. 8, 217-225 https://doi.org/10.1096/fasebj.8.2.8119492
- Morrison, D. C. and Ryan, J. L. (1987) Endotoxins and disease mechanisms. Annu. Rev. Med. 38, 417-432 https://doi.org/10.1146/annurev.me.38.020187.002221
- Adams, D. O. and Hamilton, T. A. (1984) The cell biology of macrophage activation. Annu. Rev. Immunol. 2, 283-318 https://doi.org/10.1146/annurev.iy.02.040184.001435
- Wadia, J. and Dowdy, S. F. (2002) Protein transduction technology. Curr. Opin. Biotechnol. 13, 52-56 https://doi.org/10.1016/S0958-1669(02)00284-7
- Morris, M. C., Depollier, J., Mery, J., Heitz, F. and Divita, G. (2001) A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat. Biotechnol. 19, 1173-1176 https://doi.org/10.1038/nbt1201-1173
- Schwarze, S. R., Ho, A., Vocero-Akbani, A. and Dowdy, S. R. (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285, 1569-1572 https://doi.org/10.1126/science.285.5433.1569
- Prochiantz, A. (2000) Messenger proteins: homeoproteins, TAT and others. Curr. Opin. Cell Biol. 12, 400-406 https://doi.org/10.1016/S0955-0674(00)00108-3
- Kwon, H. Y., Eum, W. S., Jang, H. W., Kang, J. H., Ryu, J. Y., Lee, B. R., Jin, L. H., Park, J. and Choi, S. Y. (2000) Transduction of Cu,Zn-superoxide dismutase mediated by an HIV-1 Tat protein basic domain into mammalian cells. FEBS Lett. 485, 163-167 https://doi.org/10.1016/S0014-5793(00)02215-8
- Eum W. S., Choung, I. S., Li, M. Z., Kang, J. H., Kim, D. W., Park, J., Kwon, H. Y. and Choi, S. Y. (2004) HIV-1 Tat mediated protein transduction of Cu,Zn superoxide dismutase into pancreatic β cells in vitro and in vivo. Free Radic. Biol. Med. 37, 339-349 https://doi.org/10.1016/j.freeradbiomed.2004.04.036
- Choi, H. S., An, J. J., Kim, S. Y., Lee, S. H., Kim, D. W., Yoo, K. Y., Won, M. H., Kang, T. C., Kwon, H. J., Kang, J. H., Cho, S. W., Kwon, O. S., Park, J., Eum, W. S. and Choi, S. Y. (2006) PEP-1-SOD fusion protein efficiently protects against paraquat-induced dopaminergic neuron damage in a Parkinson disease mouse model. Free Radic. Biol. Med. 41, 1058-1068 https://doi.org/10.1016/j.freeradbiomed.2006.06.006
- Eum, W. S., Kim D. W., Hwang, I. K., Yoo, K. Y., Kang, T. C., Jang, S. H., Choi, H. S., Choi, S. H., Kim, Y. H., Kim, S. Y., Kwon, H. Y., Kang, J. H., Kwon, O. S., Cho, S. W., Lee, K. S., Park, J., Won, M. H. and Choi, S. Y. (2004) In vivo protein transduction: biologically active intact PEP-1-superoxide dismutase fusion protein efficiently protects against ischemic insult. Free Radic. Biol. Med. 37, 1656-1669 https://doi.org/10.1016/j.freeradbiomed.2004.07.028
- Jeong, M. S., Kim, D. W., Lee, M. J., Lee, Y. P., Kim, S. Y., Lee, S. H., Jang, S. H., Lee, K. S., Park, J., Kang, T. C., Cho, S. W., Kwon, O. S., Eum, W. S. and Choi, S. Y. (2008) HIV-1 Tat-mediated protein transduction of human brain creatine kinase into PC12 cells. BMB reports 41, 537-541 https://doi.org/10.5483/BMBRep.2008.41.7.537
- Lee, Y. P., Kim, D. W., Lee, M. J., Jeong, M. S., Kim, S. Y., Lee, S. H., Jang, S. H., Park, J., Kang, T. C., Won, M. H., Cho, S. W., Kwon, O. S., Eum, W. S. and Choi, S. Y. (2008) Human brain pyridoxal-5'-phosphate phosphatase (PLPP): protein transduction of PEP-1-PLPP into PC12 cells. BMB reports 41, 408-413 https://doi.org/10.5483/BMBRep.2008.41.5.408
- Kim, D. W., Kim, S. Y., Lee, S. H., Lee, Y. P., Lee, M. J., Jeong, M. S., Jang, S. H., Park, J., Lee, K. S., Kang, T. C., Won, M. H., Cho, S. W., Kwon, O. S., Eum, W. S. and Choi, S. Y. (2008) Protein transduction of an antioxidant enzyme: subcellular localization of superoxide dismutase fusion protein in cells. BMB reports 41, 170-175 https://doi.org/10.5483/BMBRep.2008.41.2.170
- Richard, J. P., Melikov, K., Vives, E., Rmos, C., Vereure, B., Gait, M. J., Chernomordik, L. V. and Lebleu, B. (2003) Cell penetrating peptides: a reevaluaation of the mechanism of cellular uptake. J. Biol. Chem. 278, 585-590 https://doi.org/10.1074/jbc.M209548200
- Cashman, S. M., Morris, D. J., and Kuman-Singh, R. (2003). Evidence of protein transduction but not intracellular by protein fused to HIV Tat in retinal cell culture and in vivo. Mol. Ther. 8, 130-142 https://doi.org/10.1016/S1525-0016(03)00131-X
- Dillon, B. J., Holtsberq, F. W., Ensor, C. M., Bomalaski, J. S. and Clark, M. A. (2002) Biochemical characterization of the arginine degrading enzymes arginase and arginine deiminase and their effect on nitric oxide production. Med. Sci. Monit. 8, BR248-253
- Shen, L. J., Lin, W. C., Beloussow, K. and Shen, W. C. (2003) Resistance to the anti-proliferative activity of recombinant arginine deiminase in cell culture correlates with the endogenous enzyme, argininosuccinate synthetase. Cancer Lett. 191, 165-170 https://doi.org/10.1016/S030-43835(02)00693-6
- Shen, L. J. and Shen, W. C. (2006) Drug evaluation: ADIPEG- 20-a PEGylated arginine deiminase for arginine-auxotrophic cencers. Curr. Opin. Mol. Ther. 8, 240-248
- Gong, H., Pottgen, C., Stuben, G., Havers, W., Stuschke, M. and Schweigerer, L. (2003) Arginine deiminase and other antiangiogenic agents inhibit unfavorable neuroblastoma growth: potentiation by irradiation. Int. J. Cancer 106, 723-728 https://doi.org/10.1002/ijc.11298
- van Rijn, J., van den Berg, J., Schipper, R. G., de Jong, S., Cuijpers, V., Verhofstad, A. A. and Teerlink, T. (2004) Induction of hyperammonia in irradiated hepatoma cells: a recapitulation and possible explanation of the phenomenon. Br. J. Cancer 91, 150-152 https://doi.org/10.1038/sj.bjc.6601915
- Park, H., Lee, J. B., Shim, Y. J., Shin, Y. J., Jeong, S. Y., Oh, J., Park, G. H., Lee, K. H. and Min, B. H. (2008) Arginine deiminase enhances MCF-7 cell radiosensitivity by inducing changes in the expression of cell cycle-related proteins. Mol. Cells 25, 305-311
- Bradford, M. (1976) A rapid and sensitive method for the quantitation of microgram quantities utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
- Boyde, T. R. and Mohammed, R. (1980) Optimization of conditions for the colorimetic determination of citrulline, using deacetyl monoxime. Anal. Biochem. 107, 424-431 https://doi.org/10.1016/0003-2697(80)90404-2
- Misko, T. P., Schilling, R. J., Salvemini, D., Moore, W. M. and Currie, M. G. (1993) A fluorometric assay for the measurement of nitrite in biological samples. Anal Biochem. 214, 11-16 https://doi.org/10.1006/abio.1993.1449
- Kim, J. E., Hur, H. J., Lee, K. W. and Lee, H. J. (2007) Anti-inflammatory effects of recombinant arginine deiminase originating from Lactococus lactis ssp.lactis ATCC 7962. J. Microbiol. Biotechnol. 17, 1491-1497
Cited by
- Amelioration of streptozotocin-induced diabetes by Agrocybe chaxingu polysaccharide vol.29, pp.4, 2010, https://doi.org/10.1007/s10059-010-0044-9