• Title/Summary/Keyword: Area-Contact

Search Result 1,965, Processing Time 0.037 seconds

Fabrication of a novel dry adhesive structure with reduced effective stiffness (유효강성을 줄인 새로운 형상의 건식부착물 제작)

  • Cho, Young-Sam;Jung, Dae-Hwan;Han, Houk-Seop;Kim, Wan-Doo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.421-425
    • /
    • 2007
  • In the fabrication of dry adhesive structure, increasing contact-points or contact-area is the primary goal because the adhesive force grows in proportion to the contact-area. The simplest way to extend the contact surface is the fabrication by using soft materials. However, the column-array structure could confront the matting phenomenon which columns are stuck together. Therefore, we need a novel design to reduce the effective stiffness with adequate stiff materials like a gecko's setae. In this study, we propose a novel design for the dry adhesive structure. Moreover, we analyzed whether the adhesive structure conforms the rough surface sufficiently through finite element method adopted the non-bonding interaction as the body force. Also, we fabricated the novel structures via UV lithography and some techniques. In addition, we examined the adhesive force of the novel structures.

  • PDF

Effect of the Friction Characteristics of Sliding Contacts on Electrical Signal Transmission

  • Jang, Ho;Park, Hyung Kyu
    • KSTLE International Journal
    • /
    • v.2 no.1
    • /
    • pp.22-28
    • /
    • 2001
  • A resin bonded copper-graphite brush was investigated to evaluate the characteristics electrical signal transmission through a sliding contact as a function of the relative amount of graphite and copper in the brush. Particular attention was given to the correlation between electrical signal fluctuation and tribological properties in an electrical sliding contact system. A ring-on-block type tribotester was used for this experiment and the ring was made from pure copper. Results showed that a copper-graphite brush at a particular composition range exhibited the most stable frictional behavior with a minimum voltage drop. The amount of voltage drop at the friction interface was affected by the surface roughness, transfer film formation at the friction interface, and the real area of contact. Microscopic observations and the surface analysis showed a good agreement with the results from this experiment. The results also indicated that the electrical signal flunctuation was directly associated with the oscillation of the coefficient of friction during sliding by nanoscale variation of contacts at the friction interface.

  • PDF

Wetting Characteristic of Single Droplet Impinging on Hole-Patterned Texture Surfaces (홀 패턴 텍스쳐 표면에서 충돌하는 단일 액적의 젖음 특성)

  • Moon, Joo Hyun;Lee, Sangmin;Jung, Jung-Yeul;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.20 no.3
    • /
    • pp.181-186
    • /
    • 2015
  • This study presents the dynamic wetting characteristics of an impact droplet on hole-patterned textured surfaces. The flat surfaces were manufactured by a drilling machine to generate the micro-order holes, leading to make the surface hydrophobic. Other flat surfaces were fabricated by the anodizing technique to make hydrophilic texture surfaces with a nanometer order. For hydrophilic and hydrophobic textured surfaces with similar texture area fractions, the impinging droplet experiments were conducted and compared with flat surface cases. As results, an anodized textured surface decreases apparent equilibrium contact angle and increases contact diameters, because of increase in contact area and surface energy. This is attributed to more penetration inside holes from larger capillary pressure on nanometer-order holes. On the other hand, temporal evolution of the contact diameter is smaller for the hydrophobic textured surface from less penetration on the micro-order holes.

Pore size effects of adhesion and friction for nanohoneycomb structures in AFM (원자현미경에서 나노허니컴 구조물의 홀 사이즈에 따른 점착 및 마찰 거동 분석)

  • Choi, Duk-Hyun;Lee, Pyung-So;Lee, Kun-Hong;Park, Hyun-Chul;Hwang, Woon-Bong
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.129-132
    • /
    • 2005
  • This study analyzes the behavior of adhesion and friction according to the pore size of nanohoneycomb structures in atomic force microscope (AFM). Anodic aluminum oxide (AAO) films are fabricated as nanohoneycomb structures. According to the pore diameters of the nanohoneycomb structures, the adhesive forces and the frictional coefficients arc obtained in AFM, and the behaviors are analyzed in the view of the contact area between the sphere particle and nanohoneycomb substrate. The effective Young's moduli of the nanohoneycomb structures are measured from the nanoindentation tests, and the contact areas at zero applied load are calculated by combining the porosity of the nanohoneycomb structures and the contact radius determined from JKR and DMT theory.

  • PDF

Study on the Film Thickness and Pressure of the Transient Line Contact Elastohydrodynamic Lubrication (비정상 상태의 선접촉 탄성유체윤활 유막두께 및 유막압력 특성연구)

  • Cho, Jae-Cheol;Jang, Si-Youl
    • Tribology and Lubricants
    • /
    • v.25 no.5
    • /
    • pp.335-341
    • /
    • 2009
  • Elastohydrodynamic lubrication (EHL) analysis shows that film thickness is very flat in the contact area and pressure distribution is somehow similar to that of Hertzian contact pressure except the outlet region with pressure spike. These typical patterns of EHL film thickness and pressure are the cases under the steady contact conditions of applied loads and speeds. However, many engineering contacts are rather under the conditions of varying loads and contact speeds, and therefore the predictions for endurance life and performance of machine elements with steady EHL analysis are not suitable in many occasions. This study shows the differences in film thickness formation and pressure distribution between steady and transient contact conditions in several contact cases.

Effect of Thermal Contact Resistance on Transient Thermoelastic Contact for an Elastic Foundation (탄성기반에서 과도 열탄성 접촉에 대한 열 접촉 저항의 영향)

  • Jang Yong-Hoon;Lee Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.833-840
    • /
    • 2006
  • The paper presents a numerical solution to the problem of a hot rigid indenter sliding over a thermoelastic Winkler foundation with a thermal contact resistance at constant speed. It is shown analytically that no steady-state solution can exist for sufficiently high temperature or sufficiently small normal load or speed, regardless of the thermal contact resistance. However the steady state solution may exist in the same situation if the thermal contact resistance is considered. This means that the effect of the large values of temperature difference and small value of force or velocity which occur at no steady state can be lessened due to the thermal contact resistance. When there is no steady state, the predicted transient behavior involves regions of transient stationary contact interspersed with regions of separation regardless of the thermal contact resistance. Initially, the system typically exhibits a small number of relatively large contact and separation regions, but after the initial transient, the trailing edge of the contact area is only established and the leading edge loses contact, reducing the total extent of contact considerably. As time progresses, larger and larger numbers of small contact areas are established, unlit eventually the accuracy of the algorithm is limited by the discretization used.

Minimum cost design for circular isolated footings with eccentric column taking into account that the surface in contact with the ground works partially in compression

  • Inocencio Luevanos-Soto;Arnulfo Luevanos-Rojas;Victor Manuel Moreno-Landeros;Griselda Santiago-Hurtado
    • Coupled systems mechanics
    • /
    • v.13 no.4
    • /
    • pp.311-335
    • /
    • 2024
  • This work aims to show a model to estimate the minimum cost (Thickness and area of steel in X and Y directions) for design a circular isolated footing with eccentric column that considers that the surface in contact with the ground works partially under compression. The formulation is shown by integration to find the moments, the bending shears and the punching shear using the pressure volume under the footing. Some researchers show the minimum cost design for circular isolated footings for an eccentric column assuming that the contact area works completely in compression, others consider the contact surface with the ground working partially in compression for a column in the center of the base. Three numerical examples are developed to obtain the complete design, which are: Example 1 for a column in the center of the base,Example 2 for a column at a distance of 1.50 m from the center of the base in the X direction, Example 3 for a column at a distance of 1.50 m from the center of the base in both directions. Also, a comparison of the new model against the model proposed by other authors is presented. The comparison shows that the new model generates a great saving of up to 43.74% for minimum area and 48.44% for minimum cost design in a column located in the center of the base, and when the column is located at a distance of radius/2 starting from the center of the base in the X direction generates great savings of up to 45.24% for minimum area and 31.80% for minimum cost design. Therefore, it is advisable to use the model presented in this study.

Study on Estimation of Local Ice Pressures Considering Contact Area with Sea Ice (해빙과의 접촉 면적을 고려한 국부 빙압력 추정 연구)

  • Kim, Tae-Wook;Lee, Tak-Kee
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.423-428
    • /
    • 2014
  • Ice loads may be conveniently categorized as local ice loads and global ice loads. Local ice loads are often defined as ice pressures acting on local areas of shell plates and stiffeners. Therefore, local ice loads are defined in all ice class rules. However, directly measuring the local ice pressure using the actual ice class vessel is a very difficult task because appropriate instruments for direct measurement must be installed on the outer hull, and they are easily damaged by direct ice contacts/impacts. This paper focuses on the estimation of the local ice pressure using the data obtained from icebreaking tests in the Arctic sea in 2010 using the Korean icebreaking research vessel (IBRV) ARAON. When she contacted the sea ice, the local deformation of the side shell was measured by the strain gauges attached to the inside of the shell. Simultaneously, the contact area between the side shell and sea ice is investigated by analyzing the distribution of the measured strain data. Finally, the ice pressures for different contact areas are estimated by performing a structural analysis.

Effects of Thermal Contact Resistance on Transient Thermoelastic Contacts for an Elastic Foundation (시간에 따른 탄성지지 열탄성 접촉에 대한 열접촉저항의 영향)

  • Jang, Yong-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.330-333
    • /
    • 2005
  • The paper presents a numerical solution to the problem of a hot rigid indenter siding over a thermoelastic Winkler foundation with a thermal contact resistance at constant speed. It is shown analytically that no steady-state solution can exist for sufficiently high temperature or sufficiently small normal load or speed regardless of the thermal contact resistance. However, the steady state solution may exist in the same situation if the thermal contact resistance is considered. This means that the effect of the large values of temperature difference and small value of force or velocity which occur at no steady state can be lessened due to the thermal contact resistance. When there is no steady-state the predicted transient behavior involves regions of transient stationary contact interspersed with regions of separation regardless of the thermal contact resistance. Initially, the system typically exhibits a small number of relatively large contact and separation regions, but after the initial transient the trailing edge of the contact area is only established and the leading edge loses contact, reducing the total extent of contact considerably. As time progresses, larger and larger number of small contact areas are established, until eventually the accuracy of the algorithm is limited by the discretization used.

  • PDF

Optimum Design of Dye-Sensitized Solar Module for Building-Integrated Photovoltaic Systems

  • Lee, Kyu-Seok;Kang, Man Gu
    • ETRI Journal
    • /
    • v.39 no.6
    • /
    • pp.859-865
    • /
    • 2017
  • This paper presents a method for determining the optimum active-area width (OAW) of solar cells in a module architecture. The current density-voltage curve of a reference cell with a narrow active-area width is used to reproduce the current density profile in the test cell whose active area width is to be optimized. We obtained self-consistent current density and electric potential profiles from iterative calculations of both properties, considering the distributed resistance of the contact layers. Further, we determined the OAW that yields the maximum efficiency by calculating efficiency as a function of the active-area width. The proposed method can be applied to the design of the active area of a dye-sensitized solar cell in Z-type series connection modules for indoor and building-integrated photovoltaic systems. Our calculations predicted that OAW increases as the sheet resistances of the contact layers and the intensity of light decrease.