• 제목/요약/키워드: Area source

검색결과 3,554건 처리시간 0.026초

도시지역 비점오염원 관리를 위한 SWMM의 적용 -포항시를 대상으로- (Application of SWMM for Management of the Non-point Source in Urban Area -Case Study on the Pohang City-)

  • 이재용;장성호;박진식
    • 한국환경보건학회지
    • /
    • 제34권3호
    • /
    • pp.247-254
    • /
    • 2008
  • Non-point source pollution that originates from surface applied chemicals in either liquid or solid form is a part of urban activities and it appears in the surface runoff caused by rainfall. This study investigates the characteristics of non point source pollution in relation to storm events and the first washing effect in the Study area, which is comprised of different land use types. Then, a Best Management Practices (BMP) model, for urban areas, is applied with the Storm water Management Model (SWMM) Windows Interface which was developed by the EPA in the USA. During the storm event analysis of the hydrographic and pollutographic data showed that the peak of pollutants concentration was within the peak flow, 30 to 60 minute into the storm event in the Study area. The results of simulation using SWMM Windows Interface, Structure Techniques as applied in the study were highly efficient for removal of pollutants. Predicted removal efficiency was 26.0% for SS, 22.1 for BOD, 24.1% for COD, 20.6% for T-N, and 21.6% for T-P, respectively.

지표면의 시공간적 변화를 고려한 비점오염원 저감 저류지 최적용량산정 (Optimal Volume Estimation for Non-point Source Control Retention Considering Spatio-Temporal Variation of Land Surface)

  • 최대규;김진관;이재관;김상단
    • 한국물환경학회지
    • /
    • 제27권1호
    • /
    • pp.9-18
    • /
    • 2011
  • In this study the optimal volume for non-point source control retention is estimated considering spatio-temporal variation of land surface. The 3-parameter mixed exponential probability density function is used to represent the statistical properties of rainfall events, and NRCS-CN method is applied as rainfall-runoff transformation. The catchment drainage area is divided into individual $30m{\times}30m$ cells, and runoff curve number is estimated at each cell. Using the derived probability density function theory, the stormwater probability density function at each cell is derived from the rainfall probability density function and NRCS-CN rainfall-runoff transformation. Considering the antecedent soil moisture condition at each cell and the spatial variation of CN value at the whole catchment drainage area, the ensemble stormwater capture curve is established to estimate the optimal volume for an non-point source control retention. The comparison between spatio-temporally varied land surface and constant land surface is presented as a case study for a urban drainage area.

PMF 모델을 이용한 미세분진의 오염원 확인과 기여도 추정 : 탄소성분을 이용한 휘발유 및 경유차량 오염원의 분리 (Identifying Ambient PM2.5 Sources and Estimating their Contributions by Using PMF : Separation of Gasoline and Diesel Automobile Sources by Analyzing ECs and OCs)

  • 이형우;이태정;김동술
    • 한국대기환경학회지
    • /
    • 제25권1호
    • /
    • pp.75-89
    • /
    • 2009
  • The purpose of this study was to identify $PM_{2.5}$ sources and to estimate their contributions to the border of Yongin-Suwon area, based on the analysis of the $PM_{2.5}$ mass concentration and the associated inorganic elements, ions and carbon components. The contribution of $PM_{2.5}$ sources were estimated by using a positive matrix factorization (PMF) model to identify air emission sources. For this study, $PM_{2.5}$ samples were collected from May, 2007 to April, 2008. The inorganic elements were analyzed by an ICP-AES. The ionic components in $PM_{2.5}$ were analyzed by an Ie. The carbon components were also analyzed by DRI/OGC analyzer. After performing PMF modeling, a total of 12 sources were identified and their contributions were quantitatively estimated. The contributions from each emission source were as follows: 11.3% from oil combustion source, 3.4% from bus/highway source, 5.8% from diesel vehicle source, 4.7% from gasoline vehicle source, 8.8% from biomass burning source, 15.1 % from secondary sulfate, 5.2% from secondary nitrate source, 13.4% from industrial related source, 4.1% from Cl-rich source, 19.6% from soil related source, 1.0% from aged sea salt, and 7.4% from coal combustion source, respectively. This study provides basic information on the major sources affecting air quality, and then it will help to effectively control $PM_{2.5}$ in this study area.

Estimate of Regional and Broad-based Sources for PM2.5 Collected in an Industrial Area of Japan

  • Nakatsubo, Ryouhei;Tsunetomo, Daisuke;Horie, Yosuke;Hiraki, Takatoshi;Saitoh, Katsumi;Yoda, Yoshiko;Shima, Masayuki
    • Asian Journal of Atmospheric Environment
    • /
    • 제8권3호
    • /
    • pp.126-139
    • /
    • 2014
  • In order to estimate the influence of sources on $PM_{2.5}$ in the industrial area of Japan, we carried out a source analysis using chemical component data of $PM_{2.5}$. $PM_{2.5}$ samples were collected intermittently at an industrial area in Japan from July 2010 to November 2012. Water soluble ions ($Cl^-$, $NO_3{^-}$, $SO{_4}^{2-}$, $Na^+$,$NH_4{^+}$, $K^+$, $Mg^{2+}$, $Ca^{2+}$), elements (Al, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, Sb, Pb), and carbonaceous species (OC, EC) of the $PM_{2.5}$ (a total of 198 samples) were analyzed. Positive Matrix Factorization (PMF) model was applied to the data of those chemical components to identify the source of $PM_{2.5}$. At this observation site, nine factors were extracted. The major contributors of $PM_{2.5}$ were secondary sulfate 1, in which loading factors of $SO{_4}^{2-}$ and $NH_4{^+}$ were large (percentage source contribution: 20.9%), traffic, in which loading factors of OC (organic carbon) and EC (elemental carbon) were large (20.8%), secondary sulfate 2, in which loading factors of K and $SO{_4}^{2-}$ were large (8.0%), steel mills (7.8%), secondary chloride and nitrate (7.0%), soil (5.0%), heavy oil combustion (3.8%), sea salt (3.8%), and coal combustion (2.3%). The conditional probability function (CPF) and the potential source contribution function (PSCF) were carried out to examine the influence of a regional source and a broad-based source, respectively. CPF results supported local source influences such as steel mills, sea salt, traffic, coal combustion, and heavy oil combustion. PSCF results suggested that ships in the East China Sea, an industrial area of the east coastal region of China, and an active volcano in the Kyushu region of Japan were potential regional sources of secondary sulfate 1. Secondary sulfate 2 was affected by the burning of biomass fields and by coal combustion in Chinese urban areas such as Beijing, Hebei, and western Inner Mongolia. Source characterization using continuous data from one site showed a potential source representing fossil fuel combustion is affected both by regional and broad-based sources.

전기장 또는 자기장 송신원을 이용한 벡터 CSMT (Controlled Source Magnetotellurics with Vector Measurement Using Electric and Magnetic Sources)

  • 이희순;송윤호
    • 자원환경지질
    • /
    • 제30권5호
    • /
    • pp.451-458
    • /
    • 1997
  • The horizontal magnetic dipole as well as electrical dipole was adopted as a source to compute one-dimensional electromagnetic field behavior in controlled source magnetotellurics. he Cagniard impedances due to horizontal magnetic dipole source, especially phases, showed better frequency characteristics than those due to electric one. The magnetic dipole is inferior to the electric dipole in the point of relatively weak transmitting power at low frequency. But considering high resistivity charateristics of Korean geology, the magnetic dipole source is recommended for the survey up to depth of 500 m. A vector CSMT was introduced to get more reliable data in the area of two- or three-dimensional structures. A software and interpretation technique using polarization ellipses were developed. The technique was tested by synthetic data, which provided theoretical basis of the methodology. Although CSMT has inevitable limitation of investigation depth due to practically possible source-receiver separation, we proposed to use the technique developed in this paper where MT is not available, for example, in extremely noisy area or for shallow target.

  • PDF

지진의 이중산입에 대한 소고(小考) (A Note on the Earthquake Double Counting)

  • 노명현
    • 한국지진공학회논문집
    • /
    • 제27권3호
    • /
    • pp.157-162
    • /
    • 2023
  • As a result of active geological investigation of faults in Korea, many Quaternary faults have been identified and some of them were judged to have potential to generate earthquakes. Those faults need to be considered as additional seismic sources in the seismic hazard analysis. When a fault is introduced as a new source, the earthquakes generated by the fault should be removed from the area sources that include any part of the fault, to avoid double counting. In practice, however, double counting cannot completely be avoided as the complete separation of the fault-generated earthquakes from the area sources is impossible due to uncertainties related to the earthquake location, subsurface structures of faults, etc. When a new fault source is introduced, the only constraint is the invariance of earthquake frequency. The maximum earthquake and the Richter-b value should also be subject to change, but there are no competent approaches to estimate the change due to incomplete separation of earthquakes. To gain insight into the effect of a new fault source, an example calculation of the seismic hazard were carried out. The example calculation shows that addition of a new fault source centers seismic hazard around the fault source.

면/이동오염원 배출량 공간 할당방식에 대한 고찰 (Considerations in Space Allocation Methods of Emission from Area and Mobile Sources)

  • 김현구
    • 한국환경과학회지
    • /
    • 제11권7호
    • /
    • pp.697-703
    • /
    • 2002
  • In the present study, space allocation methods of pollutant emission from area and mobile sources are assessed by the actual application to air quality modeling of Pohang area. It is found that the TM-based modeling which allocates emission onto the 1km x 1km sized TM-grid system predicts almost the same mean ground-level concentration as that by the GIS-based modeling which uses geographical information of area and mobile sources directly, while maximum ground-level concentration by the TM-based modeling is predicted considerably lower than that by the GIS-based modeling. Moreover, the problem is found that the TM-based modeling causes deviation of mobile roads. In conclusion, it is anticipated to applying GIS-based modeling for a more accurate assessment of air quality in local scale.

PMF를 이용한 수도권지역 VOCs의 배출원 추정 (Preliminary Source Apportionment of Ambient VOCs Measured in Seoul Metropolitan Area by Positive Matrix Factorization)

  • 한진석;문광주;김록호;신선아;홍유덕;정일록
    • 한국대기환경학회지
    • /
    • 제22권1호
    • /
    • pp.85-97
    • /
    • 2006
  • The PAMS data collected at four sites in Seoul metropolitan area in 2004 were analyzed using the positive matrix factorization (PMF) technique, in order to identify the possible sources and estimate their contributions to ambient VOCs. Ten sources were then resolved at Jeongdong, Bulgwang, Yangpyeong, and Seokmo, including vehicle exhaust, LPG vehicle, petroleum evaporation, coating, solvent, asphalt, LNG, Industry & heating, open burning, and biogenic source. The PMF analysis results showed that vehicle exhaust commonly contributed the largest portion of the predicted total VOCs mass concentration, more than $30\%$ at four sites. The contribution of other resolved sources were significantly different according to the characteristics of site location. In the case of Jeongdong and bulgwang located in urban area, various anthropogenic sources such as coating, solvent, asphalt, residual LPG, and petroleum evaporation contributed about $40\%$ of total VOCs mass. On the other hand, at yangpyeong and Seokmo located in rural and remote area, the portion of these anthropogenic sources was reduced to less than $30\%$ and the contribution of natural sources including open burning and biogenic source clearly observed. These results were considerably corresponding to the emission inventory investigated in this region.

남해안 및 제주도 일대 해안사구의 자원식물상 (The Plant Resources of the Sand Dune on Southern Coast and Jeju Island, Korea)

  • 오승환;김혁진
    • 한국자원식물학회지
    • /
    • 제21권5호
    • /
    • pp.374-387
    • /
    • 2008
  • 본 연구는 우리나라 남해안과 제주도 일대 해안사구에 분포하는 유관속식물을 대상으로 2006년 2월부터 11월까지 조사한 결과, 조사지역내에 분포하는 식물은 51과 130속 152종 1품종 18변종 등 총 171분류군으로 관찰되었으며, 주요 출현종은 Calystegia soldanella(갯메꽃), Ischaemum anthephoroides(갯쇠보리), Imperata cylindrica va. koenigii(띠), Vitex rotundifolia(순비가나무), Carex pumila(좀보리사초), Carex kobomugi(통보리사초) 등으로 나타났다. 본 지역에서 조사된 171종류의 식물자원의 유용도를 분석한 결과 총 113종류의 자원식물이 분류되었으며, 식용자원(Edible source, E)은 73종류(40.5%), 약용자원(Medicinal source, M)은 61종류(33.9%), 초지자원(Pasture source, P)은 22종류(12.2%), 관상자원(Ornamental source, O)은 16종류(8.9%), 섬유자원 (Fiber source, F)은 7종류(3.9%), 목재자원(Timber source, T)은 1종류(0.5%)의 순으로 나타났다. 한국특산식물은 1분류군이 조사지역내 분포하며, 식물구계학적 특정식물 중 I III IV V등급 식물은 24과 28속 29분류군으로 소산식물 171분류군의 16.9%로 나타났으며, 귀화식물은 9과 16속 19분류군로 우리나라 전체 귀화식물 271종류의 7.0%이다.

여수석유화학산단 내 VOCs에 대한 오염원 분류표의 개발 및 CMB 모델에 의한 기여도 산정 (Development of Source Profiles and Estimation of Source Contribution for VOCs by the Chemical Mass Balance Model in the Yeosu Petrochemical Industrial Complex)

  • 전준민;허당;김동술
    • 한국대기환경학회지
    • /
    • 제21권1호
    • /
    • pp.83-96
    • /
    • 2005
  • The purposes of this study were to characterize the local levels of VOCs (volatile organic compounds), to develop source profiles of VOCs, and to quantify the source contribution of VOCs using the CMB (chemical mass balance) model. The concentration of VOCs had been measured every 6-day duration in the SRO monitoring site in the Yeosu Petrochemical Industrial Complex from September 2000 to August 2002. The total of 35 target VOCs, which were included in the TO-14 designated from the U.S. EPA, was selected to be monitored in the study area. During a 24-h period, the ambient VOCs were sampled by using canisters placing about 10 ~ 15 m above the ground level. The collected canisters were then analyzed by a GC-MS in the laboratory. Aside from ambient sampling at the SRO site, the VOCs had been intensively and massively measured from 8 direct sources and 4 general sources in the study area. The results obtained in the study were as follows; first, the annual mean concentrations of the target VOCs were widely distributed regardless of monitoring sites in the Yeosu Petrochemical Industrial Complex. In particular, the concentrations of BTX (Benzene, Toluene, Xylene), vinyl chloride were higher than other target compounds. Second, based on these source sample data, source profiles for VOCs were developed to apply a receptor model, the CMB model. Third, the results of source apportionment study for the VOCs in the SRO Site were as follows; The source of petrochemical plant was apportioned by 31.3% in terms of VOCs mass. The site was also affected by 16.7% from wastewater treatment plant, 14.0% from iron mills, 8.4% from refineries, 4.4% from oil storage, 3.8% from automobiles, 2.3% from fertilizer, 2.3% from painting, 2.2% from waste incinerator, 0.6% from graphic art, and 0.4% from gasoline vapor sources.