• Title/Summary/Keyword: Area Replacement Ratio

Search Result 108, Processing Time 0.027 seconds

Effect of performance method of sand compaction piles on the mechanical behavior of reinforced soft clay

  • Kwon, Jeonggeun;Kim, Changyoung;Im, Jong-Chul;Yoo, Jae-won
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.175-185
    • /
    • 2018
  • Sand Compaction Piles (SCPs) are constructed by feeding and compacting sand into soft clay ground. Sand piles have been installed with irregular cross-sectional shapes, and mixtures of both sand and clay, which violate the design requirement of circular shape according to the replacement area ratio due to various factors, including side flow pressure. Therefore, design assumptions cannot be satisfied according to the conditions of the ground and construction and the replacement area ratio. Two case histories were collected, examined, and interpreted in order to study the effect of the shape of SCPs. The effects of the distortion of SCP shape and the mixture of sand and clay were studied with the results of large direct shear tests. The design internal friction angle was secured with the irregular cross-sectional sand piles regardless of the replacement area ratio. The design internal friction angle was secured regardless of mixed condition when the mixture of sand and clay was higher than the replacement area ratio of 65%. Therefore, systematic construction management is recommended with a replacement area ratio below 65%.

A Numerical Analysis for the Influential Factors on the Stress Concentration Ratio (모래다짐말뚝지반의 응력분담비에 영향을 미치는 인자에 대한 해석적 연구)

  • Choi, Hyo-Won;Shin, Hyun-Young;Yoo, Han-Kyu;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.966-973
    • /
    • 2005
  • The stress concentration ratio in accordance with area replacement ratios were considered as core elements of design. However, the stress concentration ratio will be vary depends on progress of consolidation in clay ground. And, since it is not sure to know the affecting factors accurately, the value is decided based on field experiences. To use SCP method more effective and correspond to soil improvement, the decision on proper area replacement ratio through the exact stress concentration ratio is very important. Accordingly, a numerical analysis on influence of various factors that needed to make rational designing guide for decision of proper area replacement ratio to stress concentration ratio was executed in this study.

  • PDF

Variation of Stress Concentration Ratio with Area Replacement Ratio for SCP-Reinforced Soils under Quay Wall (치환율에 따른 안벽구조물 하부 SCP 복합지반의 응력분담비)

  • 김윤태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.1
    • /
    • pp.18-26
    • /
    • 2004
  • In order to accelerate the rate of consolidation settlement, to reduce settlement, and to increase bearing capacity for soft ground under quay, sand compaction pile method (SCP) has usually been applied. SCP-reinforced ground is composite soil which consists of the sand pile and the surrounding soft soil. One of main important considerations in design and analysis for SCP-reinforced soils is stress concentration ratio according to area replacement ratio. In this paper, the numerical analysis was conducted to investigate characteristics of stress concentration ratio in composite ground. It was found that stress concentration ratio of composite ground is not constant as well as depends on several factors such as area replacement ratio, depth of soft soil, and consolidation process. The values of stress concentration ratio increase during loading stage due to stress transfer of composite soil, and reach up to 2.5∼12 according to area replacement ratio at the end of construction. After the end of consolidation, however, these values are converged to 2.5 to 6.0 irrespective of area replacement ratio due to increase in effective stress of soft soil during consolidation process.

Behaviour Characteristics of Sand Compaction Pile with varying Area Replacement Ratio (모래다집말뚝(SCP)의 치환율 변화에 따른 거동 특성 연구)

  • 박용원;김병일;윤길림;이상익;문대중;권오순
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.117-128
    • /
    • 2000
  • Sand compaction pile(SCP) is one of the ground improvement techniques which is being used for not only accelerating consolidation but also increasing bearing capacity of loose sands or soft clay grounds. In this study, laboratory model test and large-scale direct shear test were performed to investigate the effects of area replacement ratio of composite ground in order to find out the optimum value of area replacement ratio for the ground improvement purpose. Area replacement ratios of 20%, 30%, 40%, 50%, 60% were chosen respectively in the model tests to study the effects of area replacement ratio on variations of stress concentration ratio, settlement and shear strength characteristics of composite ground. In large-scale direct she4ar tests, area replacement ratios of 20%, 30%, 46% were applied to study their effects on shear strength characteristics of composite ground.

  • PDF

Comparison Study on Stress Sharing Characteristics of Sand or Gravel Compaction Piles with Low Replacement Area Ratio (모래와 쇄석을 이용한 저치환율 다짐말뚝공법의 응력분담특성에 관한 비교)

  • You, Seung-Kyong;Cho, Sung-Min;Kim, Ji-Yong;Shim, Min-Bo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.443-452
    • /
    • 2005
  • The compaction pile methods with low replacement area ratio used sand(SCP) or gravel(GCP) has been usually applied to improvement of soft clay deposits. In order to design accurately compaction pile method with low replacement area ratio, it is important to understand the mechanical interaction between sand piles and clays and its mechanism during consolidation process of the composition ground. In this paper, a series of numerical analyses on composition ground improved by SCP and GCP with low replacement area ratio were carried out, in order to investigate the mechanical interaction between sand piles and clays. The applicability of numerical analyses, in which and elasto-viscoplastic consolidation finite element method was applied, could be confirmed comparing with results of a series of model tests on consolidation behaviors of composition ground improved by SCP. And,through the results of the numerical analyses, each mechanical behaviors of compaction piles and clays in the composition ground during consolidation was elucidated, together with stress sharing mechanism between compaction piles and clays.

  • PDF

A Study on the Shear Strength Characteristics of Composited Ground applying RAP Method by Large Direct Shear Test (대형직접전단시험에 의한 RAP 복합지반의 전단강도 특성 연구)

  • Chun, Byung-Sik;Seo, Deok-Dong;Kim, Jong-San
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.82-89
    • /
    • 2004
  • To secure stability and availability of Rammed Aggregate Pier method as the foundation of a structure, the shear strength characteristics according to the area replacement ratio of RAP and the relative density of in-situ ground was studied through soil laboratory tests and large direct shear tests in a model ground. As a result, the internal friction angle tends to increase in proportion to in-situ relative density(Very Loose, Loose, Medium) in composite ground formed by the same area replacement ratio of RAP and also increase in proportion to increasing the area replacement ratio(30, 40, 50%) of RAP in the same ground condition. Furthermore, the comparative analysis between the experimental value and theoretical value of the shear strength is carried out.

  • PDF

A Study on the Behavior of Sand Compaction Piles in Soft Ground (연약지반에 적용된 모래다짐말뚝의 거동특성에 관한 수치해석 연구)

  • Lee, Jungsang;Chung, sungrae;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.8
    • /
    • pp.33-38
    • /
    • 2011
  • Presently, domestic SCP method with low replacement ratio is required as alternative in order to overcome the profitability of the sand resource because of the deficiency phenomenon of the sand resource by the actual condition design and construction is made by SCP method with low replacement ratio more than 70% for the port construction in the safe side. Sand compaction pile(SCP) method has been mainly used to improve the properties of soft clay or loose sandy ground. In design of SCP at soft clay ground, it is very important to determine the stress concentration ratio of composite ground relevant to the area replacement ratio. In this study, 2-dimensional FEM analyses were carried out to evaluate the stress concentration ratio of composite ground depending upon the area replacement ratio. When the interpretation result replacement ratio was 30%, the stress assigned rate showed and as the replacement ratio was high, the stress assigned rate according to the sinkage showed the low stress assigned rate.

Experimental Study on Stress Sharing Behavior of Composition Ground Improved by Sand Compaction Piles with Low Replacement Area Ratio (저치환율 모래다짐말뚝에 의한 복합지반의 응력분담거동에 대한 실험적 연구)

  • 유승경
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.253-261
    • /
    • 2003
  • Mechanical behavior of composition pound improved by sand compaction pile (SCP) with low replacement area ratio could be more significantly affected by mechanical interaction between sand piles and clays than that of clay ground improved by SD or SCP with high replacement area ratio. It is essential to elucidate the mechanical interaction in the improved clay ground, in order to accurately estimate behavior in reducing settlement of the improved ground and increasing strength of clays. In this paper, through a series of model tests of composition ground improved by SCP with low replacement area ratio, each mechanical behaviors of sand piles and clays in the composition ground during consolidation was elucidated, together with stress sharing behavior between sand piles and clays.

Study on Stress Sharing Mechanism Composition Ground Improved by SCP with Low Replacement Area Ratio (저치환율 SCP에 의한 복합지반의 응력분담 메커니즘에 관한 연구)

  • You, Seung-Kyong;Matsui, Tamotsu;Hong, Won-Pyo;Yoon, Gil-Lim
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.197-202
    • /
    • 2004
  • In order to design accurately sand compaction pile (SCP) method with low replacement area ratio, it is important to understand the mechanical interaction between sand piles and clays and its mechanism during consolidation process of the composition ground. In this paper, a series of numerical analyses on composition ground improved by SCP with low replacement area ratio were carried out, in order to investigate the mechanical interaction between sand piles and clays. The applicability of numerical analyses, in which an elasto-viscoplastic consolidation finite element method was applied, could be confirmed comparing with results of a series of model tests on consolidation behaviors of composition ground improved by SCP. And, through the results of the numerical analyses, each mechanical behaviors of sand piles and clays in the composition ground during consolidation was elucidated, together with stress sharing mechanism between sand piles and clays.

  • PDF

Stress Concentration Ratio of GCP Depending on the Mixing Ratio of Crushed Stone and Sand (GCP의 쇄석과 모래의 배합비 별 응력분담비)

  • Na, Seung-Ju;Kim, Min-Seok;Park, Kyung-Ho;Kim, Daehyeon
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.9
    • /
    • pp.37-50
    • /
    • 2016
  • Gravel compaction pile (GCP) is widely used as it increases the bearing capacity of soft ground and reduces the consolidation settlement. Stress concentration ratio for GCP design is dependent on the area replacement, surcharge pressure and depth. However, a range of stress concentration ratio obtained through field, laboratory experiments and numerical analysis is large. Little study has been done on the stress concentration ratio for the mixing ratio of gravel and sand. The main objective of the study is to evaluate the stress concentration ratio for both area replacement ratio and mixing ratio through literature review and numerical analysis. Numerical analysis using the finite element program ABAQUS 6.12-4 has been performed for the composite ground with GCP. The excess pore water pressure and stress concentration ratio of composite ground have been analyzed for both the area replacement ratio and the mixing ratio. Based on the previous research results, a range of stress concentration ratio obtained from the field tests, laboratory tests, numerical analysis on the GCP studies is found to be 1.7-3.2, 2.0-7.5 and 2.0-6.5, respectively. Based on the numerical analysis results, as the area replacement ratio increases, the stress concentration ratio increases up to 30% and then decreases at 40%. Also, the stress concentration ratio tends to increase up to 70:30 and then to decrease after 60:40.