• Title/Summary/Keyword: Arduino system

Search Result 404, Processing Time 0.025 seconds

Development of Dental Calculus Diagnosis System using Fluorescence Detection (형광 검출을 이용한 치석 진단 시스템 개발)

  • Jang, Seon-Hui;Lee, Young-Rim;Lee, Woo-Cheol
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.715-722
    • /
    • 2022
  • If you don't regularly go to the dentist to check your teeth, it is difficult to notice cavities or various diseases of your teeth until you have pain or discomfort. Dental plaque is produced by the combination of food or foreign substances and bacteria in the mouth. Starch breaks down from the bacteria that form tartar. The acid that occurs at this time melts the enamel of the teeth and becomes a cavity. So tartar management is important. Poppyrin, the metabolism of bacteria in the mouth, reacts at 405 nm wavelengths and becomes red fluorescent, which can be seen by imaging through certain wavelength filters. By the above method, Frag and tartar are fluorescently detected and photographed with a yellow series of filters that pass wavelengths of 500 nm or more. It uses MATLAB to detect and display red fluorescence through image processing. Using the difference in voltage between normal teeth and tartar through an optical measuring circuit, it was connected to an Arduino and displayed on the LCD. This allows the user to know the presence and location of dental plaque more accurately.

Counting People Walking Through Doorway using Easy-to-Install IR Infrared Sensors (설치가 간편한 IR 적외선 센서를 활용한 출입문 유동인구 계측 방법)

  • Oppokhonov, Shokirkhon;Lee, Jae-Hyun;Jung, Jae-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.35-40
    • /
    • 2021
  • People counting data is crucial for most business owners, since they can derive meaningful information about customers movement within their businesses. For example, owners of the supermarkets can increase or decrease the number of checkouts counters depending on number of occupants. Also, it has many applications in smart buildings, too. Where it can be used as a smart controller to control heating and cooling systems depending on a number of occupants in each room. There are advanced technologies like camera-based people counting system, which can give more accurate counting result. But they are expensive, hard to deploy and privacy invasive. In this paper, we propose a method and a hardware sensor for counting people passing through a passage or an entrance using IR Infrared sensors. Proposed sensor operates at low voltage, so low power consumption ensure long duration on batteries. Moreover, we propose a new method that distinguishes human body and other objects. Proposed method is inexpensive, easy to install and most importantly, it is real-time. The evaluation of our proposed method showed that when counting people passing one by one without overlapping, recall was 96% and when people carrying handbag like objects, the precision was 88%. Our proposed method outperforms IR Infrared based people counting systems in term of counting accuracy.

  • PDF

Constructing an Internet of things wetland monitoring device and a real-time wetland monitoring system

  • Chaewon Kang;Kyungik Gil
    • Membrane and Water Treatment
    • /
    • v.14 no.4
    • /
    • pp.155-162
    • /
    • 2023
  • Global climate change and urbanization have various demerits, such as water pollution, flood damage, and deterioration of water circulation. Thus, attention is drawn to Nature-based Solution (NbS) that solve environmental problems in ways that imitate nature. Among the NbS, urban wetlands are facilities that perform functions, such as removing pollutants from a city, improving water circulation, and providing ecological habitats, by strengthening original natural wetland pillars. Frequent monitoring and maintenance are essential for urban wetlands to maintain their performance; therefore, there is a need to apply the Internet of Things (IoT) technology to wetland monitoring. Therefore, in this study, we attempted to develop a real-time wetland monitoring device and interface. Temperature, water temperature, humidity, soil humidity, PM1, PM2.5, and PM10 were measured, and the measurements were taken at 10-minute intervals for three days in both indoor and wetland. Sensors suitable for conditions that needed to be measured and an Arduino MEGA 2560 were connected to enable sensing, and communication modules were connected to transmit data to real-time databases. The transmitted data were displayed on a developed web page. The data measured to verify the monitoring device were compared with data from the Korea meteorological administration and the Korea environment corporation, and the output and upward or downward trend were similar. Moreover, findings from a related patent search indicated that there are a minimal number of instances where information and communication technology (ICT) has been applied in wetland contexts. Hence, it is essential to consider further research, development, and implementation of ICT to address this gap. The results of this study could be the basis for time-series data analysis research using automation, machine learning, or deep learning in urban wetland maintenance.

Compressed Sensing Based Low Power Data Transmission Systems in Mobile Sensor Networks (모바일 센서 네트워크에서 압축 센싱을 이용한 저전력 데이터 전송 시스템)

  • Hong, Jiyeon;Kwon, Jungmin;Kwon, Minhae;Park, Hyunggon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1589-1597
    • /
    • 2016
  • In this paper, we propose a system in a large-scale environment, such as desert and ocean, that can reduce the overall transmission power consumption in mobile sensor network. It is known that the transmission power consumption in wireless sensor network is proportional to the square of transmission distance. Therefore, if the locations of mobile sensors are far from the sink node, the power consumption required for data transmission increases, leading to shortened operating time of the sensors. Hence, in this paper, we propose a system that can reduce the power consumption by allowing to transmit data only if the transmission range of the sensors is within a predetermined distance. Moreover, the energy efficiency of the overall sensor network can even be improved by reducing the number of data transmissions at the sink node to gateway based on compressed sensing. The proposed system is actually implemented using Arduino and Raspberry Pi and it is confirmed that source data can be approximately decoded even when the gateway received encoded data fewer than the required number of data from the sink node. The performance of the proposed system is analyzed in theory.

Design and Implementation of a Robot Analyzing Mental Disorder Risks for a Single-person Household Worker through Facial Expression-Detecting System (표정 감지 시스템을 통한 직장 생활을 하는 1인 가구의 정신질환 발병 위험도 분석 로봇 설계 및 구현)

  • Lee, Seong-Ung;Lee, Kang-Hee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.1
    • /
    • pp.489-494
    • /
    • 2020
  • We propose to designs and to implements a robot analyzing the risk of occurrence of mental disorder of single-person households' workers through the facial expression-detecting system. Due to complex social factors, the number and proportion of single-person households continues to increase. In addition, contrast to the household of many family members, the prevalence of mental disorder among single-person household varies greatly. Since most patients with mental can not detect the disease on their own, counseling and treatment with doctors are often ignored. In this study, we design and implement a robot analyzing the risk of mental disorder of single-person households workers by constructing a system with Q.bo One, a social robot created by Thecorpora. Q.bo One is consisted of Arduino, ar raspberry pie, and other sensors designed to detect and respond to sensors in the direction users want to implement. Based on the DSM-5 provided by the American Psychiatric Association, the risk of mental disorder occurrence was specified based on mental disorder. Q.bo One analyzed the facial expressions of the subjects for a week or two to evaluate depressive disorder, anxiety disorder. If the mental disorder occurrence risk is high, Q.bo One is designd to inform the subject to counsel and have medical treatment with a specialist.

Design and Implementation of Virtual Reality Prototype Crane Training System using Unity 3D (Unity 3D를 이용한 가상현실 프로토타입 크레인 훈련 시스템 설계 및 구현)

  • Heo, Seok-Yeol;Kim, Geon-Young;Choi, Jung-Bin;Park, Ji-Woo;Jeon, Min-Ji;Lee, Wan-Jik
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.569-575
    • /
    • 2022
  • It is most desirable to build a crane training program in the same evvironment as the actual port, but it has problem such as time constraint and cost. To overcome these limitations, next-generation training programs based on AR/VR are receiving a lot of attention. In this paper, a prototype of a harbor crane training system based on virtual reality was designed and implemented. The system implemented in this paper consists of two elements: an Arduino-based IoT terminal and an HMD equipped with a Unity application program. The IoT terminal consists of 2 controllers, 2 toggle switches, and 8 button switches to process data generated according to the user's operation. The HMD uses Oculus Quest2 and is connected to the IoT terminal through wireless communication to provide user convenience. The training system implemented in this paper is expected to provide trainees with a training environment independent of time and place through virtual reality and to save time and money.

Development of portable digital radiography system with device for sensing X-ray source-detector angle and its application in chest imaging (엑스선촬영 각도를 측정할 수 있는 장치 개발과 흉부 X선 영상촬영에서의 적용)

  • Kim, Tae-Hoon;Heo, Dong-Woon;Ryu, Jong-Hyun;Jeong, Chang-Won;Jun, Hong Young;Kim, Kyu Gyeom;Hong, Jee Min;Jang, Mi Yeon;Kim, Dae Won;Yoon, Kwon-Ha
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.01a
    • /
    • pp.235-238
    • /
    • 2017
  • This study was to develop a portable digital radiography (PDR) system with a function measuring the X-ray source-with-detector angle (SDA) and to evaluate the imaging performance for the diagnosis of chest imaging. The SDA device consisted of an Arduino, an accelerometer and gyro sensor, and a Bluetooth module. According to different angle degrees, five anatomical landmarks on chest images were assessed using a 5-point scale. Mean signal-to-noise ratio and contrast-to-noise ratio were 182.47 and 141.43. Spatial resolution (10% MTF) and entrance surface dose were 3.17 lp/mm ($157{\mu}m$) and 0.266mGy. The angle values of SDA device were not significant difference as compared to those of the digital angle meter. In chest imaging, SNR and CNR values were not significantly different according to different angle degrees (repeated-measures ANOVA, p>0.05). The visibility scores of the border of heart, 5th rib and scapula showed significant differences according to different angles (rmANOVA, p<0.05), whereas the scores of the clavicle and 1st rib were not significant. It is noticeable that the increase in SDA degree was consistent with the increase of visibility score. Our PDR with SDA device would be useful to be applicable to clinical radiography setting according to the standard radiography guideline at various fields.

  • PDF

Implementation for the Remote Control and Operational Status Monitoring Systems of the Industrial Ice Machine (산업용 냉동기의 원격 제어 및 운전 상태 모니터링을 위한 시스템 구현)

  • Jung, Jin-uk;Jin, Kyo-hong;Hwang, Min-tae
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.9
    • /
    • pp.169-178
    • /
    • 2018
  • The ice machine is the machine for making ice. As most of the companies that manufactures and sells the ice machine are small and medium-sized companies, they have been they have been experiencing the trouble for the after-sales service after selling the machine. The difficulties of the after-sales service are mostly caused by unnecessary customer service requests of the purchaser, which eventually leads to the unnecessary expenditure of the seller and the purchaser. However, financially, the poor ice machine manufacturers want to reduce this cost as much as possible. Furthermore, even if they want to sell their products overseas, they are hesitating because of the after-sales service. For this reason, the companies making the ice machine need a system which checks the status of the ice machine and takes the proper actions without the visiting service. Therefore, this paper introduces the remote control and operational status monitoring systems which can monitor the status of the ice machine in the remote area and control it as needed. Through the developed system, the company manufacturing the ice machine and the manager of the ice machine can understand the current status of the ice machine and respond against the ice machine's trouble, immediately. In addition, it can be expected to have great effects on cost reduction because the maintenance and management after selling can be efficiently performed.

Development of crop harvest prediction system architecture using IoT Sensing (IoT Sensing을 이용한 농작물 수확 시기 예측 시스템 아키텍처 개발)

  • Oh, Jung Won;Kim, Hangkon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.719-729
    • /
    • 2017
  • Recently, the field of agriculture has been gaining a new leap with the integration of ICT technology in agriculture. In particular, smart farms, which incorporate the Internet of Things (IoT) technology in agriculture, are in the spotlight. Smart farm technology collects and analyzes information such as temperature and humidity of the environment where crops are cultivated in real time using sensors to automatically control the devices necessary for harvesting crops in the control device, Environment. Although smart farm technology is paying attention as if it can solve everything, most of the research focuses only on increasing crop yields. This paper focuses on the development of a system architecture that can harvest high quality crops at the optimum stage rather than increase crop yields. In this paper, we have developed an architecture using apple trees as a sample and used the color information and weight information to predict the harvest time of apple trees. The simple board that collects color information and weight information and transmits it to the server side uses Arduino and adopts model-driven development (MDD) as development methodology. We have developed an architecture to provide services to PC users in the form of Web and to provide Smart Phone users with services in the form of hybrid apps. We also developed an architecture that uses beacon technology to provide orchestration information to users in real time.

Smart Electric Mobility Operating System Integrated with Off-Grid Solar Power Plants in Tanzania: Vision and Trial Run (탄자니아의 태양광 발전소와 통합된 전기 모빌리티 운영 시스템 : 비전과 시범운행)

  • Rhee, Hyop-Seung;Im, Hyuck-Soon;Manongi, Frank Andrew;Shin, Young-In;Song, Ho-Won;Jung, Woo-Kyun;Ahn, Sung-Hoon
    • Journal of Appropriate Technology
    • /
    • v.7 no.2
    • /
    • pp.127-135
    • /
    • 2021
  • To respond to the threat of global warming, countries around the world are promoting the spread of renewable energy and reduction of carbon emissions. In accordance with the United Nation's Sustainable Development Goal to combat climate change and its impacts, global automakers are pushing for a full transition to electric vehicles within the next 10 years. Electric vehicles can be a useful means for reducing carbon emissions, but in order to reduce carbon generated in the stage of producing electricity for charging, a power generation system using eco-friendly renewable energy is required. In this study, we propose a smart electric mobility operating system integrated with off-grid solar power plants established in Tanzania, Africa. By applying smart monitoring and communication functions based on Arduino-based computing devices, information such as remaining battery capacity, battery status, location, speed, altitude, and road conditions of an electric vehicle or electric motorcycle is monitored. In addition, we present a scenario that communicates with the surrounding independent solar power plant infrastructure to predict the drivable distance and optimize the charging schedule and route to the destination. The feasibility of the proposed system was verified through test runs of electric motorcycles. In considering local environmental characteristics in Tanzania for the operation of the electric mobility system, factors such as eco-friendliness, economic feasibility, ease of operation, and compatibility should be weighed. The smart electric mobility operating system proposed in this study can be an important basis for implementing the SDGs' climate change response.