• Title/Summary/Keyword: Arduino sensor

Search Result 269, Processing Time 0.033 seconds

Development of a Portable Potentiostat with Wireless Communications for Measuring Dissolved Oxygen (용존산소 측정을 위한 무선통신 기반 휴대형 포텐쇼스탯 개발)

  • Lee, Hyun-Seok;Han, Ji-Hoon;Pak, Jungho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1641-1647
    • /
    • 2018
  • In this paper, we describe a portable potentiostat which is capable of cyclic voltammetry(CV) and amperometry for electrochemical dissolved oxygen sensor. In addition, this portable potentiostat can also transmit the measured data wirelessly to android devices such as smart phone, tablet, etc. through Bluetooth. The potentiostat system consists of three parts; a voltage generator circuit which is controlled by Arduino nano and 12-bit DAC(digital to analog converter) to generate necessary electric potential for operating the electrochemical sensor, an oxidation/reduction current measurement circuit, and a Bluetooth module to transmit data wirelessly to an android device. Once measurements are carried out with the android application, the measured data is transmitted to the android device via Bluetooth and displayed using the android app. in real time. In this paper, we report the measured reduction current with a fabricated dissolved oxygen sensor in both saturated-oxygen state and zero-oxygen states. The results of the developed portable potentiostat system are in good agreement with those of the commercial portable potentiostat (${\mu}stat200$, Dropsens inc.). The measured peak reduction currents using the developed potentiostat and the commercial ${\mu}stat200$ potentiostat were $-0.755{\mu}A$ and $-0.724{\mu}A$, respectively. The reduction currents measured at zero-oxygen state were $-0.005{\mu}A$ and $-0.004{\mu}A$. The discrepancy between those two systems seems very small, which implies successful development of a portable and wireless potentionstat.

Properties of CoGe thin film-based galvanic cells and their applications for IoT sensor networks (CoGe 박막 기반 galvanic cell의 특성 및 IoT 센서 네트워크에 대한 적용)

  • Jeon, Buil;Han, Dongsoo;Yoon, Giwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.9
    • /
    • pp.1347-1356
    • /
    • 2022
  • In this paper, we investigate the properties of CoGe thin film-based galvanic cells as a function of their dimension (cell length, width, etc.) and show their application as sensors to Arduino-based IoT sensor networks to detect water contact. Because these CoGe thin film-based galvanic cells do not require mechanical strains or temperature gradients unlike piezoelectric and thermoelectric energy harvesters, we think that these thin film-based galvanic cells are more suitable for self-powered sensor networks demanding sustainable and robust energy harvesters. In the past, a sputter-deposited CoGe thin film has not been intensively investigated for energy harvesting appilcations. Thus, in this study, we perform a feasibility study of galvanic cells composed of a sputter-deposited CoGe thin film to see if they can be applied as potential self-powered sensors. We believe that this paper will be of great help in developing even more enhanced sensor networks.

A Development of Healthcare Monitoring System Based on Internet of Things Effective

  • KIM, Song-Eun;MUN, Ji-Hui;KIM, Kyoung-Sook;KANG, Min-Soo
    • Korean Journal of Artificial Intelligence
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • The Recently there has been a growing interest in health care due to the COVID-19 situation. In this paper, we intend to develop a healthcare monitoring system to provide users with smart healthcare systems in line with the healthcare 3.0 era. The system consists of a wireless network between various sensors, Android smartphones, and OLEDs using Bluetooth, and through this, a health care monitoring system capable of collecting user's biometric information and managing health by receiving data values of sensors connected to Arduino. In conclusion, the user's BPM value was calculated using the heart rate sensor, and the exercise intensity can be adjusted through this. In addition, a step derivation algorithm is implemented using an acceleration sensor, and calorie consumption can be measured using the step and weight values. As such, the heart rate, step count, calorie consumption data can be transmitted to a smartphone application through a Bluetooth module and output, and can be output to an OLED for users who are not easy to access the smartphone. This healthcare monitoring system can be applied to various groups and technologies.

A Design and Implementation of a Bluetooth-Based Safety Equipment for Bicycle Using Smartphone (스마트폰을 활용한 블루투스 기반의 자전거 안전장비 설계 및 구현)

  • Park, Won-Ho;Lee, Ki Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.919-922
    • /
    • 2013
  • Currently, society thinks human-health is very important. As a result, the number of individual bikes is increasing. And bicycle accident rate is increasing every year. We have developed the safety-equipment utilizing a smartphone. Because, in order to reduce the rate of bicycle accidents. The working principle is that the connection between the bicycle and safety equipment with built-in Bluetooth chip. Information of bike-driving Is measured using a smartphone with built-in gyro sensor. I made an algorithm for specifying a direction by using the values of the gyro sensor. With this algorithm, it is possible to reduce the accident rate of the bicycle.

  • PDF

A Study on the Smart Fire Detection System using the Wireless Communication (무선통신을 이용한 스마트 화재감지 시스템에 관한 연구)

  • Chung, Byoung-Chan;Na, Wonshik
    • Journal of Convergence Society for SMB
    • /
    • v.6 no.3
    • /
    • pp.37-41
    • /
    • 2016
  • In this paper, we propose a fire alarm system that utilizes Wi-Fi to alarm multiple people at once. This system, based on Arduino, uses smoke, flame and temperature sensor units to sense fire and send detection data to a server via wireless communication system. The server uses stored data to relay current fire situations gathered from nearby sensors to smartphones. It also automatically reports the fire using location data from sensors. Using this system, we were able to retrieve fire alarm from sensors via push notification of our smartphone. We also confirmed the establishment of linkage with sensors and automatic report of fire via SMS. From this result, the possibility of sending real-time notifications via the Internet toward nearby smartphones about disasters such as conflagration has been proven to be feasible.

Community Driving using Distance Control between Vehicles (차량 간 거리 제어를 이용한 군집 주행)

  • Park, Jin-Chun;Kim, Min-Kyu;Lee, Moon-Hyuk;Han, Hee-Ju;Lee, Seung-Dae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.1071-1078
    • /
    • 2018
  • In this paper, we implemented community driving system for auto-vehicles as a preceding research of drone's community flight. We used ultrasonic sensors in order to measure the distance between vehicles, and designed each vehicles to maintain specific distance to each other, by making the following vehicle to stop moving when the distance is closed to less than 20cm, to start moving when the distance increases to more than 30cm. We have also designed vehicle to accelerate until the distance is closed to 30cm when they are apart for more than 40cm due to contingencies during driving.

Design of multifunctional disinfection system (다기능 방역 시스템의 설계)

  • Choi, Duk-Kyu;Song, Kwang-ho;Kim, Ha-hyeong;Yoon, min-Gyu;Lee, Seung-jun;Jeong, Jae-seop;Jeong, Sang-chan;Lee, Jea-ik;Kim, So-yeon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.495-496
    • /
    • 2021
  • 코로나 19로 인하여 다중이용시설에 출입 시 정부 지침에 따라 QR코드 스캔, 출입 명부 작성, 체온 측정 등 방역절차를 지켜야한다. 본 연구에서는 방역 절차를 간편화하고 동합한 방역 시스템을 제안한다. QR코드 스캐너를 통하여 출입자의 신상 정보를 확인하며 체온 측정 모듈을 통하여 출입자의 체온을 측정한다. 추가적으로 워터펌프를 통하여 소독제를 분사하며 서보모터를 통하여 출입문을 열고 닫는다. 또한, 산업 현장에서는 알코올 측정 센서를 통하여 작업자의 알코올 수치를 측정하여 음주로 인한 산업사고도 예방한다.

  • PDF

Logistics Sorting System using Autonomous Driving Robot (자율주행 로봇을 이용한 물류 자동분류 시스템)

  • Kim, Tae-Sun;Kim, Sang-Hyeok;Kim, Ki-Hun;Oh, Yong-Teak;Lee, Jae-Hong;Jo, Woo-Bin;Kim, Kyung-Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.491-492
    • /
    • 2021
  • 현대사회의 물류 현장에서 근로자가 직접 물류를 분류하는 작업을 하거나 상하차 작업을 진행하고 있다. 본 논문에서 제안하는 자율주행 로봇을 이용한 물류 분류 시스템은 물류 운반 로봇과 컨베이어 벨트로 구성된다. 물류 운반 로봇은 경로 설정 및 장애물 감지가 가능한 자율주행 기능을 가지며, 컨베이어 벨트는 하차된 물류의 무게 측정과 배송 가격을 표시하는 기능을 가진다. 본 연구의 결과는 근로자들의 노동 강도와 육체적 또는 정신적인 피해로 인해 발생하는 산업재해의 발생률을 감소시킬 수 있는 기대와 심야 시간에 부족한 인력을 보충하여 24시간 물류센터를 가동할 수 있는 가능성을 가진다.

  • PDF

The Implementation of Day and Night Intruder Motion Detection System using Arduino Kit (아두이노 키트를 이용한 주야간 침입자 움직임 감지 시스템 구현)

  • Young-Oh Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.919-926
    • /
    • 2023
  • In this paper, we implemented the surveillance camera system capable of day and night shooting. To this end, it is designed to capture clear images even at night using a CMOS image sensor as well as an IR-LED. In addition, a relatively simple motion detection algorithm was proposed through color model separation. Motions can be detected by extracting only the H channel from the color model, dividing the image into blocks, and then applying the block matching method using the average color value between consecutive frames. When motions are detected during filming, an alarm sounds automatically and a day and night motion detection system is implemented that can capture and save the event screen to a PC.

System for Transmitting Army Hand Signals Using Motion Sensors (모션 센서를 이용한 군대 수신호 전송 시스템)

  • Shin, Geon;Jeon, Jaechol;Jeon, Minho;Choi, Sukwon;Kim, Iksu
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.10
    • /
    • pp.331-338
    • /
    • 2016
  • In this paper, we propose a system for transmitting army hand signals using motion sensors. The proposed system consists of a squad commander device, squad member devices, and a server. The squad command device and squad member device have been implemented using a micro arduino, an accelerometer sensor, and a gyroscope sensor, and the server has been implemented using a Rasberry Pi 3. Because the devices are made in the form of band, they are lightweight and portable. The proposed system can transmit the hand signals through vibration in conditions of poor visibility. We have designed and implemented the squad member device to be able to recognize four military hand signals. Through experiments, the proposed system have shown 88.82% of correct recognition. In conclusion, we expect to increase effectiveness of army operations and survival rate of soldiers.