• Title/Summary/Keyword: ArduPilot

Search Result 4, Processing Time 0.018 seconds

Development of Drone Cluster Flight Simulation using Gazebo (Gazebo를 이용한 드론 군집 비행 시뮬레이션 개발)

  • Choi, Hyo Hyun;Kim, Hyung Gyu
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.205-206
    • /
    • 2021
  • 본 논문에서는 ROS를 이용한 드론 군집 비행 시뮬레이션을 구현한 결과를 보인다. ROS 환경에서 Gazebo 시뮬레이션 툴과 ArduPilot을 이용하여 모델링된 드론을 Gazebo에 적용한 뒤, 프로그래밍된 명령을 적용하여 각각의 드론이 명령에 따라 제어되는 군집비행을 보인다. 시뮬레이션은 12대의 드론이 각각 cpp 파일에 따라 제어되도록 설정한 launch 파일을 roslaunch하여 설정한 모든 드론이 Gazebo에서 각각 제어되는 군집비행 시뮬레이션을 구현하였다.

  • PDF

Underwater Acoustic Mavlink Communication for Swarming AUVS

  • Muller, Yukiko;Oshiro, Shiho;Motohara, Takuma;Kinjo, Atsushi;Suzuki, Taisaku;Wada, Tomohisa
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.277-283
    • /
    • 2021
  • The objective of this project is to conduct an underwater survey. The primary goal is to develop a device that can achieve the desired output under test conditions. For this reason, certain practical considerations must be taken into account, and the implementation is then developed to be carried out to obtain stable performance with the available hardware based on that experiment. The experiment was performed via BlueROV2 (Remotely Operated Vehicle) using RaspberryPi and softwares such as QGC (QGroundControl) and ArduPilot. This paper explains the work, the results with the collected data and how we implemented the work is presented in the end. The intention of this experiment is to connect two PCs using RaspberryPi with MAVLink communication using a Commercial-Off-The-Shelf device.

A Study on the Design and Implementation of Fine Dust Measurement LED Using Drone

  • Park, Jong-Youel;Ko, Chang-Bae
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.48-54
    • /
    • 2020
  • Researchers recognized air pollution changes causing diseases and difficulties in living due to environmental pollution following various human activities, and have studied how to avoid fine dust harmful to the human respiratory system to be healthy. To this end, Arduino is used to equip fine dust level sensors in drones to measure the fine dust levels, visualize the measurements with LED indicator colors depending on the measurements to inform users of the danger of fine dust, and use the benefits of drones to specify dangerous fine dust zones and measure the fine dust levels. Users can see the changes depending on the fine dust levels in real time with the LED indicators. This will contributes to measuring fine dust levels easily in dangerous areas. Mission Planner (ArduPilot) is used to set up the GPS of drone, and store the data from the dust sensor as contents. This study aims to establish a method for improving the environment to measure fine dust levels with drones with LED indicators for fine dust, and reduce fine dust.

Prototype Kite Development for Wind Power Generation (고공풍력 발전용 시제품 Kite 비행체 개발)

  • Kwon, Jae-Wook;Kim, Jong-Chul;Moon, Sang-Man;Choi, Ji-Ung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.10a
    • /
    • pp.259-260
    • /
    • 2012
  • With increasing interest in alternative energy source for green growth, this document shows that the study of kite flight control is based on the concept of autonomous flight of kite can exploit the energy. Currently, prototype kite was designed and the purpose of its flight test, by manual flight control with Remote Controller, was performed for the feasibility of the full automatic flight control. For the future research, the test data should be collected through the many flight test under various environment.

  • PDF