• Title/Summary/Keyword: Arctic region

Search Result 95, Processing Time 0.024 seconds

Crystal Structure and Functional Characterization of a Cytochrome P450 (BaCYP106A2) from Bacillus sp. PAMC 23377

  • Kim, Ki-Hwa;Lee, Chang Woo;Dangi, Bikash;Park, Sun-Ha;Park, Hyun;Oh, Tae-Jin;Lee, Jun Hyuck
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.8
    • /
    • pp.1472-1482
    • /
    • 2017
  • Bacterial cytochrome P450 (CYP) steroid hydroxylases are effectively useful in the pharmaceutical industry for introducing hydroxyl groups to a wide range of steroids. We found a putative CYP steroid hydroxylase (BaCYP106A2) from the bacterium Bacillus sp. PAMC 23377 isolated from Kara Sea of the Arctic Ocean, showing 94% sequence similarity with BmCYP106A2 (Bacillus megaterium ATCC 13368). In this study, soluble BaCYP106A2 was overexpressed to evaluate its substrate-binding activity. The substrate affinity ($K_d$ value) to 4-androstenedione was $387{\pm}37{\mu}M$. Moreover, the crystal structure of BaCYP106A2 was determined at $2.7{\AA}$ resolution. Structural analysis suggested that the ${\alpha}8-{\alpha}9$ loop region of BaCYP106A2 is intrinsically mobile and might be important for initial ligand binding. The hydroxyl activity of BaCYP106A2 was identified using in vitro enzyme assays. Its activity was confirmed with two kinds of steroid substrates, 4-androstenedione and nandrolone, using chromatography and mass spectrometry methods. The main products were mono-hydroxylated compounds with high conversion yields. This is the second study on the structure of CYP106A steroid hydroxylases, and should contribute new insight into the interactions of bacterial CYP106A with steroid substrates, providing baseline data for studying the CYP106A steroid hydroxylase from the structural and enzymatic perspectives.

Methane hydrate : The state of the art of Production technologies and environmental issues (메탄 하이드레이트의 생산 기술 현황과 환경에 미치는 영향)

  • Chang Seung yong
    • The Korean Journal of Petroleum Geology
    • /
    • v.7 no.1_2 s.8
    • /
    • pp.13-18
    • /
    • 1999
  • Methane hydrate is an ice-like solid material and it has a structure which water molecules enclose gas molecules. For low temperature and high pressure, hydrocarbon gas forms hydrate and due to this condition, it is existed in the arctic region or deep sea. Presently, the amount of methane hydrate is unpredictable, but it is assumed that the amount will be enormous. For this reason, it is expected that it will play a major role as natural gas resources in the future. However, the production technologies are stayed on the low level and the economical technology was not developed yet. Also, emission of natural gas from methane hydrate will cause global warming and thus it is considered as a critical environmental problem. In this paper, the state of the art of the production technologies and environmental effects of methane hydrate were summarized.

  • PDF

Design for avoid unstable fracture in shipbuilding and offshore plant structure (조선 및 해양플랜트 구조물의 불안전 파괴방지 설계기술)

  • An, Gyubaek;Bae, Hong-Yeol;Noh, Byung-Doo;An, Young-Ho;Choi, Jong-Kyo;Woo, Wanchuck;Park, Jeong-Ung
    • Journal of Welding and Joining
    • /
    • v.33 no.1
    • /
    • pp.35-40
    • /
    • 2015
  • Recently, there have been the increase of ship size and the development of oil and gas in arctic region. These trends have led to the requirements such as high strength, good toughness at low temperature and good weldability for prevent of brittle fracture at service temperature. There has been the key issue of crack arrestability in large size structure such as container ship. In this report for the first time, crack arrest toughness of thick steel plate welds was evaluated by large scale ESSO test for estimate of brittle crack arrestability in thick steel plate. For large structures using thick steel plates, fracture toughness of welded joint is an important factor to obtain structural integrity. In general, there are two kinds of design concepts based on fracture toughness: crack initiation and crack arrest. So far, when steel structures such as buildings, bridges and ships were manufactured using thick steel plates (max. 80~100mm in thickness), they had to be designed in order to avoid crack initiation, especially in welded joint. However, crack arrest design has been considered as a second line of defense and applied to limited industries like pipelines and nuclear power plants. Although welded joint is the weakest part to brittle fracture, there are few results to investigate crack arrest toughness of welded joint. In this study, brittle crack arrest designs were developed for hatch side coaming of large container ships using arrest weld, hole, and insert technology.

Identification of Correlation Between Fracture Toughness Parameters of Cryogenic Steel Weld Joints (극저온용 강재 용접부 파괴인성 파라메타의 상관성 규명)

  • An, Gyubaek;Hong, Seunglae;Park, Jeongung;Ro, Chanseung;Han, Ilwook
    • Journal of Welding and Joining
    • /
    • v.35 no.3
    • /
    • pp.82-87
    • /
    • 2017
  • Recent trends in shipbuilding and offshore industries are a huge increase in the ship size and the exploration and production of oil and natural gas in the arctic offshore region. High performance steel plates are required by these industrial trends. Also in IMO(International Maritime Organization) has begun to regulate of fuel of ship to environmental protection, therefore it is little bit difficult to use bunker-C oil to working ship. As the problem of environmental change such as global warming is emerged, the operation of the ship is considered to be involved in the environmental change problem, and the regulation of environmental pollution is gradually strengthened. As these environmental regulations are strengthened demand for LNG fuel ships is rapidly increasing. Currently, cryogenic steels used in LNG tanks include aluminum alloy, SUS 304, and 9%-Ni steel. Those steels are has high cost to construction of large LNG carrier. The new materials were suggested several steel mills to decrease construction cost and easy construction. The new cryogenic steel should be evaluate safety to applied real structure include LNG ship. Therefore, in this study, fracture toughness of weld joints were investigated with cryogenic steel for application of LNG tank.

Study on the Change of Significance in Female Tattoos (여성 Tattoo의 의미변화 연구)

  • Bang, Soo-Ran
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.10 no.2
    • /
    • pp.39-56
    • /
    • 2008
  • It is a remarkable phenomenon that tattoos has been rapidly spreading among women of modern years. The extremism of feminine ornaments, and pricking and piercing of the skin seem to have deep connection with women's consciousness changing to being independent, active and aggressive. The objective of this study is to analyze the potential quality of today's women, who appears emblematically through tattoo, and to search out the whole aspect and keynote of female tattoos. The methods of research are by examining the general characteristics including concept and history, considering the type and significance of ethnic female tattoos, and then comparing with the symbolism of today's female tattoos. The sphere is limited to women's tattoos from ancient times to today's modern lift, examined from large portions of Africa, Asia, Australasia, the Americas, and Arctic regions. As a result, the following had been reflected in female tattoos in the past. First, incantation, tribe, adult age, adornment, marital status, domestic ability and sex distinction, where among others, the incantatory, ornamental symbol, and domestic sign were representatives. Second, the most popular body parts for having a tattoo were around the lips, hands and abdominal region. Third, the more harsh the environment becomes such as tropical forests, isolated islands, and polar regions, the more number of females have tatoos. Fourth, women's tattoos were much less glamorous and smaller compared to those of men, distinguishing one's sex. On the other hand, today's female tattoos can be classified as five symbols: masculinity, independence, voluptuousness, affection, and purity. These symbols contain women's mentality to pass the limit, and to overcome social inferiority. In modern society, where women must compete with met it has become necessary for women to educe their potential masculine qualities. Being violent accessories for them, tattoos became a mark of such potential. Therefore, in the future, women's interest and demand for tattoos are expected to rise in proportion to the social demand of women's force.

  • PDF

Analysis of Tidal Deflection and Ice Properties of Ross Ice Shelf, Antarctica, by using DDInSAR Imagery (DDInSAR 영상을 이용한 남극 로스 빙붕의 조위변형과 물성 분석)

  • Han, Soojeong;Han, Hyangsun;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.933-944
    • /
    • 2019
  • This study analyzes the tide deformation of land boundary regions on the east (Region A) and west (Region B) sides of the Ross Ice Shelf in Antarctica using Double-Differential Interferometric Synthetic Aperture Radar (DDInSAR). A total of seven Sentinel-1A SAR images acquired in 2015-2016 were used to estimate the accuracy of tide prediction model and Young's modulus of ice shelf. First, we compared the Ross Sea Height-based Tidal Inverse (Ross_Inv) model, which is a representative tide prediction model for the Antarctic Ross Sea, with the tide deformation of the ice shelf extracted from the DDInSAR image. The accuracy was analyzed as 3.86 cm in the east region of Ross Ice Shelf and it was confirmed that the inverse barometric pressure effect must be corrected in the tide model. However, in the east, it is confirmed that the tide model may be inaccurate because a large error occurs even after correction of the atmospheric effect. In addition, the Young's modulus of the ice was calculated on the basis of the one-dimensional elastic beam model showing the correlation between the width of the hinge zone where the tide strain occurs and the ice thickness. For this purpose, the grounding line is defined as the line where the displacement caused by the tide appears in the DDInSAR image, and the hinge line is defined as the line to have the local maximum/minimum deformation, and the hinge zone as the area between the two lines. According to the one-dimensional elastic beam model assuming a semi-infinite plane, the width of the hinge region is directly proportional to the 0.75 power of the ice thickness. The width of the hinge zone was measured in the area where the ground line and the hinge line were close to the straight line shown in DDInSAR. The linear regression analysis with the 0.75 power of BEDMAP2 ice thickness estimated the Young's modulus of 1.77±0.73 GPa in the east and west of the Ross Ice Shelf. In this way, more accurate Young's modulus can be estimated by accumulating Sentinel-1 images in the future.

Excitation Response Estimation of Polar Class Vessel Propulsion Shafting System (대빙 등급 선박 추진 시스템의 기진 응답 평가)

  • Barro, Ronald D.;Lee, Don-Chool
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1166-1176
    • /
    • 2011
  • The prospect in opening the arctic trade transportation route on a year-round basis offers vast opportunity of exploring untapped resources and shortened navigational routes. In addition, the environment's remoteness and lack of technical experiences remains a big challenge for the maritime industry. With this, engine designers and makers are continually investigating, specifically optimizing propulsion shafting system design, to meet the environmental and technical challenges of the region. The International Association of Classification Society, specifically machinery requirements for polar class ships(IACS UR13), embodies the propulsion shafting design requirements for ice class vessels. However, the necessity to upgrade the various features of the unified rules in meeting current polar requirements is acknowledged by IACS and other classification societies. For the polar class propulsion shafting system, it is perceived that the main source of excitation will be the propeller - ice load interaction. The milling - and the impact load, in addition to the load cases interpreted by IACS, contribute greatly to the overall characteristic of the system and due considerations are given during the propulsion design stage. This paper will expound on the excitation load estimation factors affecting the dynamic response of the different propulsion shafting system design. It is anticipated that detailed understanding of these factors will have a significant role during propulsion shafting design in the future.

The Global Warming Hiatus Simulated in HadGEM2-AO Based on RCP8.5 (HadGEM2-AO RCP8.5 모의에서 나타난 지구온난화 멈춤)

  • Wie, Jieun;Moon, Byung-Kwon;Kim, Ki-Young;Lee, Johan
    • Journal of the Korean earth science society
    • /
    • v.35 no.4
    • /
    • pp.249-258
    • /
    • 2014
  • Despite the greenhouse gases like carbon dioxide have steadily increased in atmosphere, the overall trend of the global average surface air temperature has stalled during the last decade (2002-present). This phenomenon is often called hiatus or warming pause, which is challenging the prevailing view that anthropogenic forcing causes warming environment. Our study characterized the hiatus by analyzing the HadGEM2-AO (95 yrs) simulation data based on RCP8.5 scenario. The PC2 time series from the EOF of the zonal mean vertical ocean temperature has been defined as the index that represents the warming pause. The relationship between the hiatus, ENSO and the changes in climate system are identified by utilizing the newly defined PC2. Since the La Nina index (defined as the negative of NINO3 index) leads PC2 by about 11 months, it may be possible that the La Nina causes the warming to be interrupted. We also show that the cooling of the climate system closed tied to the heat penetration into the deep ocean, indicating the weakening the warming rate is due to the oceanic heat uptake. Finally, the global warming hiatus is characterized by the anomalous warming in Arctic region as well as the intensification of the trade wind in the equatorial Pacific.

Synoptic Climatic Patterns for Winter Extreme Low Temperature Events in the Republic of Korea (우리나라 겨울철 극한저온현상 발생 시 종관 기후 패턴)

  • Choi, Gwangyong;Kim, Junsu
    • Journal of the Korean Geographical Society
    • /
    • v.50 no.1
    • /
    • pp.1-21
    • /
    • 2015
  • The present study aims to characterize the synoptic climatic patterns of winter extreme low temperature events occurred in different regions of Korea based on daily temperature data observed at 61 weather stations under the supervision of the Korea Meteorological Administation and NCEP/NCAR reanalysis I data for the recent 40 years (1973~2012) period. Analyses of daily maximum and minimum temperatures below 10th percentile thresholds show that high frequencies of winter extreme low temperature events appear across the entire regions of Korea or in either the western or eastern half region divided by major mountain ridges at the 2~7 dayintervals particularly in the first half of the winter period (before mid-January). Composite analyses of surface synoptic climatic data including sea level pressure and wind vector reveal that 13 regional types of winter extreme low temperature events in Korea are closely associated with the relative location and intensity of both the Siberian high pressure and the Aleutian low pressure systems as well as major mountain ridges. Investigations of mid-troposphere (500 hPa) synoptic climatic charts demonstrate that the blocking-like upper troposphere low pressure system advecting the cold air from the Arctic toward the Korean Peninsula may provide favorable synoptic conditions for the outbreaks of winter extreme low temperature events in Korea. These results indicate that the monitoring of synoptic scale climatic systems in East Asia including the Siberian high pressure system, the Aleutian low pressure system and upper level blocking system is critical to the improvement of the predictability of winter extreme low temperature events in Korea.

  • PDF

Seasonal Onset and Duration in South Korea (우리나라 사계절 개시일과 지속기간)

  • Choi, Gwang-Yong;Kwon, Won-Tae;Robinson David A.
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.4 s.115
    • /
    • pp.435-456
    • /
    • 2006
  • This study examines the long-term spatial patterns and recent trends of seasonal onsets and durations defined by daily temperatures in South Korea for the period 1973-2004. Spatially, spring and winter onset dates show approximately 44 day and 63 day maximum difference respectively between south and north (Seongsanpo to Daegwallryeong) attributable to the impacts of latitudes and altitudes. In contrast, summer onset, which is more affected by proximity to oceans and altitudes than by latitudes, begins earlier in interior low elevated areas than in the coastal areas but earliest at higher latitudes than Jeiu Island. Five climatic types regarding the seasonal cycles in South Korea are spatially clustered according to the combination of longer seasonal durations. As a reflection of recent climate changes on seasonal cycles in South Korea, winter duration was shortened by 10 days during the post-1988 period due to a late winter onset of 4 days and an early spring onset of 6 days. The winter reduction began in the southern regions of the Korean Peninsula in the mid-1980s and spread northward during the 1990s period, ultimately appearing everywhere. In urbanized cities, where much of the surface is covered with asphalt or concrete, the winter reduction was intensified and summer duration was locally incremented. The reduced winter duration in recent decades shows significant teleconnections with variations of geopotential height (925hPa) in the eastern Arctic region ($0-90^{\circ}E$, $65-85^{\circ}N$) during the cold season. The reduction in winter duration in South Korea agrees with results in overall global warming trends as a climate change signal.