• 제목/요약/키워드: Architectural Constraints

검색결과 103건 처리시간 0.022초

개미군락 최적화 알고리즘을 이용한 진동수 구속조건을 가진 트러스구조물의 크기최적화 (Truss Size Optimization with Frequency Constraints using ACO Algorithm)

  • 이상진;배정은
    • 대한건축학회논문집:구조계
    • /
    • 제35권10호
    • /
    • pp.135-142
    • /
    • 2019
  • Ant colony optimization(ACO) technique is utilized in truss size optimization with frequency constraints. Total weight of truss to be minimized is considered as the objective function and multiple natural frequencies are adopted as constraints. The modified traveling salesman problem(TSP) is adopted and total length of the TSP tour is interpreted as the weight of the structure. The present ACO-based design optimization procedure uses discrete design variables and the penalty function is introduced to enforce design constraints during optimization process. Three numerical examples are carried out to verify the capability of ACO in truss optimization with frequency constraints. From numerical results, the present ACO is a very effective way of finding optimum design of truss structures in free vibration. Finally, we provide the present numerical results as future reference solutions.

제한조건을 이용한 주택 평면 설계 지식베이스시스템 개발에 관한 연구 (A Study on the Development of Knowledge-based System for Residential Design using Constraints)

  • 조용호
    • 한국주거학회:학술대회논문집
    • /
    • 한국주거학회 1995년도 학술발표대회논문집 하
    • /
    • pp.85-93
    • /
    • 1995
  • Recently, the development of Artificial Intelligence(AI) and Expert System has caused some interest in the possibility of developing an intelligent CAD system. However, these development and possibility are in an extremenly early stage for Architectural design. In this study, the design process of Residence being recognized as a Constraints-satisfied model, a part of these constraints used in the Architectural design of Residence are being systematized and sorted by the design process. Those regulations and planning items to be considered in the basic planning stage are being systematized as a knowledge base system. The possibility of this knowledge-based system as an effective design tool is studied and an integrated form of Architectural design system is proposed.

  • PDF

Stress-based topology optimization under buckling constraint using functionally graded materials

  • Minh-Ngoc Nguyen;Dongkyu Lee;Soomi Shin
    • Steel and Composite Structures
    • /
    • 제51권2호
    • /
    • pp.203-223
    • /
    • 2024
  • This study shows functionally graded material structural topology optimization under buckling constraints. The SIMP (Solid Isotropic Material with Penalization) material model is used and a method of moving asymptotes is also employed to update topology design variables. In this study, the quadrilateral element is applied to compute buckling load factors. Instead of artificial density properties, functionally graded materials are newly assigned to distribute optimal topology materials depending on the buckling load factors in a given design domain. Buckling load factor formulations are derived and confirmed by the resistance of functionally graded material properties. However, buckling constraints for functionally graded material topology optimization have not been dealt with in single material. Therefore, this study aims to find the minimum compliance topology optimization and the buckling load factor in designing the structures under buckling constraints and generate the functionally graded material distribution with asymmetric stiffness properties that minimize the compliance. Numerical examples verify the superiority and reliability of the present method.

제약조건이 있는 시뮬레이션을 위한 계층적 모델링 방법론 (Hierarchical Modeling Methodology for Contraint Simulations)

  • 이강선
    • 한국시뮬레이션학회논문지
    • /
    • 제9권4호
    • /
    • pp.41-50
    • /
    • 2000
  • We have many simulation constraints to meet as a modeled system becomes large and complex. Real-time simulations are the examples in that they are constrained by certain non-function constraints (e.g., timing constraints). In this paper, an enhanced hierarchical modeling methodology is proposed to efficiently deal with constraint-simulations. The proposed modeling method enhances hierarchical modeling methods to provide multi-resolution model. A simulation model is composed by determining the optimal level of abstraction that is guaranteed to meet the given simulation constraints. Four modeling activities are defined in the proposed method: 1) Perform the logical architectural design activity to produce a multi-resolution model, 2) Organize abstraction information of the multi-resolution model with AT (Abstraction Tree) structure, 3) Formulate the given constraints based on U (Integer Programming) approach and embrace the constraints to AT, and 4) Compose a model based on the determined level of abstraction with which the multi-resolution model can satisfy all given simulation constraints. By systematically handling simulation constraints while minimizing the modeler's interventions, we provide an efficient modeling environment for constraint-simulations.

  • PDF

Explicit Motion of Dynamic Systems with Position Constraints

  • Eun, Hee-Chang;Yang, Keun-Hyuk;Chung, Heon-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제17권4호
    • /
    • pp.538-544
    • /
    • 2003
  • Although many methodologies exist for determining the constrained equations of motion, most of these methods depend on numerical approaches such as the Lagrange multiplier's method expressed in differential/algebraic systems. In 1992, Udwadia and Kalaba proposed explicit equations of motion for constrained systems based on Gauss's principle and elementary linear algebra without any multipliers or complicated intermediate processes. The generalized inverse method was the first work to present explicit equations of motion for constrained systems. However, numerical integration results of the equation of motion gradually veer away from the constraint equations with time. Thus, an objective of this study is to provide a numerical integration scheme, which modifies the generalized inverse method to reduce the errors. The modified equations of motion for constrained systems include the position constraints of index 3 systems and their first derivatives with respect to time in addition to their second derivatives with respect to time. The effectiveness of the proposed method is illustrated by numerical examples.

Appraisal of Building Energy Systems considering Environment Constraint Conditions

  • Park, Tong-So
    • Architectural research
    • /
    • 제3권1호
    • /
    • pp.37-44
    • /
    • 2001
  • This study aims to find out sector effects with the appraisal of building energy systems of urban ecosystem considering cost effects and environmental constraints condition such as climatic change factors including $CO_2$ gas which are not dealt in the institutional boundary as components standards and performance standards on energy performance of each part of a building applied on heavy energy spending buildings at present. The results of the appraisal of building energy systems shows that the existing building energy systems are not enough to fulfil the environmental condition under the environmental constraints supposing QELROs(Quantified Emission Limitation and Reduction Objectives) of carbon-dioxide exhaust. Henceforth, it is needed to fulfill the environmental criteria required by the Climatic Change Agreement for improving the adiabatic performance of each part of a building and active using of the solar energy.

  • PDF

A fuzzy optimum design of axisymmetrically loaded thin shells of revolution

  • Kang, Moon-Myung;Mu, Zai-Gen;Kim, Seung-Deog;Kwun, Taek-Jin
    • Structural Engineering and Mechanics
    • /
    • 제7권3호
    • /
    • pp.277-288
    • /
    • 1999
  • This paper presents a fuzzy optimum design of axisymmetrically loaded thin shells of revolution. This paper consists of two parts, namely: an elastic analysis using the new curved element for finite element analysis developed in this study for axisymmetrically loaded thin shells of revolution, and the volume optimization on the basis of results evaluated from the elastic analysis. The curved element to meridian direction is used to develop the computer program. The results obtained from the computer program are compared by exact solution of each analytic example. The fuzzy optimizations of thin shells of revolution are done using [Model 2] which is in the form of a conventional crisp objective function and constraints with non-membership function, and nonlinear optimum GINO (General Interactive Optimizer) programming. In this paper, design examples show that the fuzzy optimum designs of the steel water tank and the steel dome roof could provide significant cost savings.

On the Description of Constrained Static Behavior of Continuous System

  • Eun, Hee-Chang;Lee, Min-Su;Bae, Chung-Yeol
    • Architectural research
    • /
    • 제9권1호
    • /
    • pp.39-45
    • /
    • 2007
  • The static behavior of continuous system is described by the elastic curve method or is approximately analyzed by a finite element method to be modeled as a discrete system. If a continuous system is constrained by linear constraints which restrict its static behavior, its behavior can be approximately described by the finite element method. It is not easy to describe the constrained behavior by continuous coordinate system. Starting from the generalized inverse method provided by Eun, Lee and Chung, this study is to expand the equation to the continuous systems, to perform the structural analysis of the beam under a uniform loading with interior spring supports, and to investigate the validity of the proposed method through applications.

Structural and Mechanical Systems Subjected to Constraints

  • Lee, Eun-Taik;Chung, Heon-Soo;Park, Sang-Yeol
    • Journal of Mechanical Science and Technology
    • /
    • 제18권11호
    • /
    • pp.1891-1899
    • /
    • 2004
  • The characteristics of dynamic systems subjected to multiple linear constraints are determined by considering the constrained effects. Although there have been many researches to investigate the dynamic characteristics of constrained systems, most of them depend on numerical analysis like Lagrange multipliers method. In 1992, Udwadia and Kalaba presented an explicit form to describe the motion for constrained discrete systems. Starting from the method, this study determines the dynamic characteristics of the systems to have positive semidefinite mass matrix and the continuous systems. And this study presents a closed form to calculate frequency response matrix for constrained systems subjected to harmonic forces. The proposed methods that do not depend on any numerical schemes take more generalized forms than other research results.

Dynamic Optimization Algorithm of Constrained Motion

  • Eun, Hee-Chang;Yang, Keun-Heok;Chung, Heon-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제16권8호
    • /
    • pp.1072-1078
    • /
    • 2002
  • The constrained motion requires the determination of constraint force acting on unconstrained systems for satisfying given constraints. Most of the methods to decide the force depend on numerical approaches such that the Lagrange multiplier method, and the other methods need vector analysis or complicated intermediate process. In 1992, Udwadia and Kalaba presented the generalized inverse method to describe the constrained motion as well as to calculate the constraint force. The generalized inverse method has the advantages which do not require any linearization process for the control of nonlinear systems and can explicitly describe the motion of holonomically and/or nongolonomically constrained systems. In this paper, an explicit equation to describe the constrained motion is derived by minimizing the performance index, which is a function of constraint force vector, with respect to the constraint force. At this time, it is shown that the positive-definite weighting matrix in the performance index must be the inverse of mass matrix on the basis of the Gauss's principle and the derived differential equation coincides with the generalized inverse method. The effectiveness of this method is illustrated by means of two numerical applications.