• Title/Summary/Keyword: Arch ratio

Search Result 217, Processing Time 0.032 seconds

A novel classification of anterior alveolar arch forms and alveolar bone thickness: A cone-beam computed tomography study

  • Bulyalert, Atcharee;Pimkhaokham, Atiphan
    • Imaging Science in Dentistry
    • /
    • v.48 no.3
    • /
    • pp.191-199
    • /
    • 2018
  • Purpose: This study classified alveolar arch forms and evaluated differences in alveolar bone thickness among arch forms in the anterior esthetic region using cone-beam computed tomography (CBCT) images. Materials and Methods: Axial views of 113 CBCT images were assessed at the level of 3 mm below the cementoenamel junction (CEJ) of the right and left canines. The root center points of teeth in the anterior esthetic region were used as reference points. Arch forms were classified according to their transverse dimensions and the intercanine width-to-depth ratio. The buccolingual alveolar bone thickness of each tooth was measured at 3 mm below the CEJ and at the mid-root level. Differences in the mean thicknesses among arch forms were analyzed. Results: Anterior maxillary arches could be classified as long narrow, short medium, long medium, and long wide arches. Significant differences in buccolingual alveolar bone thickness among the arch groups were found at both levels. The long wide arches presented the greatest bone thickness, followed by the long medium arches, while the long narrow and short medium arches were the thinnest. Conclusion: Arch forms were classified as long narrow, short medium, long medium, and long wide. The buccolingual alveolar bone thickness exhibited significant differences among the arch forms.

Arch Action in Reinforced Concrete Beams (철근콘크리트 보에서의 아취작용에 대한 연구)

  • Kim, Woo;Kim, Dae-Joong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.201-206
    • /
    • 1993
  • Four reinforced concrete beams without shear reinforcement were tested statically up to failure to investigate the arch action in reinforced concrete beams. Major variable was the shear span to depth ratio varied from 2 to 4. Due to the reduction of internal moment arm length by the development of arch action, the measured steel tension was higher than the calculated steel tension.

  • PDF

Intensity measure-based probabilistic seismic evaluation and vulnerability assessment of ageing bridges

  • Yazdani, Mahdi;Jahangiri, Vahid
    • Earthquakes and Structures
    • /
    • v.19 no.5
    • /
    • pp.379-393
    • /
    • 2020
  • The purpose of this study is to first evaluate the seismic behavior of ageing arch bridges by using the Intensity Measure - based demand and DCFD format, which is referred to as the fragility-hazard format. Then, an investigation is performed for their seismic vulnerability. Analytical models are created for bridges concerning different features and these models are subjected to Incremental Dynamic Analysis (IDA) analysis using a set of 22 earthquake records. The hazard curve and results of IDA analysis are employed to evaluate the return period of exceeding the limit states in the IM-based probabilistic performance-based context. Subsequently, the fragility-hazard format is used to assess factored demand, factored capacity, and the ratio of the factored demand to the factored capacity of the models with respect to different performance objectives. Finally, the vulnerability curves are obtained for the investigated bridges in terms of the loss ratio. The results revealed that decreasing the span length of the unreinforced arch bridges leads to the increase in the return period of exceeding various limit states and factored capacity and decrease in the displacement demand, the probability of failure, the factored demand, as well as the factored demand to factored capacity ratios, loss ratio, and seismic vulnerability. Finally, it is derived that the probability of the need for rehabilitation increases by an increase in the span length of the models.

A STATISTICAL STUDY OF DENIAL CROWDING WITH DENIAL CAST ANALYSIS (석고 모형분석에 의한 치아 밀집의 통계학적 연구)

  • Sohn, Byung Wha;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.21 no.2 s.34
    • /
    • pp.273-285
    • /
    • 1991
  • Crowded group is composed of 60 subjects who visited Yonsei University for orthodontic treatment and has no history of orthodontic treatment. Noncrowded group is composed of 26 subjects who has no crowding, considered to have a normal occlusion and no history of orthodontic treatment. Currently available and approved analytic method was used. Interrelationship between tooth size and arch size, and it's correlation on tooth crowding was studied and the following results were obtained. 1. In comparison of sum of mesiodistal width, of crown size of teeth was greater in noncrowded group than that of crowded group on both arch. (p < 0.01). 2. In comparison of arch lengths, the values measured from arch length 2 showed greater in noncrowded group (p < 0.01). Also in crowded group, arch length 1 showed greater value than arch length 2 on both arch (p < 0.01). 3. In comparison of arch widths, upper interlateral (p < 0.01) and upper intercanine width (p < 0.05) showed greater value in noncrowded group on upper arch and intermolar width showed greater value in noncrowded group on both upper and lower arches (p < 0.05). 4. In comparison of arch perimeters, arch perimeter 2 was greater value in noncrowded group on both upper and lower arches (p < 0.01). 5. Dentoalveolar disproportion was greater in noncrowded group on both upper and lower arches (p < 0.01). 6. In lower incisors MD/FL ratio, the central and lateral incisors were greater in crowded group, but statistial significance was only in lateral incisors (p < 0.01) 7. The irregularity index of lower incisors showed greater value in crowded group (p < 0.01).

  • PDF

Free Vibrations of Cantilever Arches with Constant Volume (일정체적 캔틸레버 아치의 자유진동)

  • Lee, Byoung-Koo;Lee, Tae-Eun;Yoon, Hee-Min
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1169-1172
    • /
    • 2007
  • This paper deals with the free vibrations of cantilever arches with constant volume. Its cross-sectional shape is the regular polygon whose depth is varied with the linear functional fashion. The non-dimensional differential equations governing the free vibration of such arch are derived and solved numerically for calculating the natural frequencies. As the numerical results, the effects of arch parameters such as side number of cross section, section ratio and aspect ratio on the natural frequencies are reported in figures.

  • PDF

Free Vibrations of Hinged-Hinged Arches with Constant Arc Length (일정한 곡선길이를 갖는 양단회전 아치의 자유진동)

  • Lee, Byoung-Koo;Lee, Tae-Eun;Kim, Gwon-Sik;Yoon, Hee-Min
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.46-49
    • /
    • 2008
  • This paper deals with the free vibrations of elastica shaped arches with constant arc length. The elastica shaped arches are formed by the post-buckled column whose arc length is always constant. The equations governing free, in-plane vibration of general arch in open literature are modified for applying the free vibrations of elastica shaped arch and solved numerically to obtain frequencies and mode shapes for hinged-hinged end constraints. The effects of rotatory inertia, rise to span length ratio and slenderness ratio on natural frequencies are presented. The frequencies of elastica and parabolic shaped arches are compared. Also, typical mode shapes are presented in figures.

  • PDF

A Prediction of Shear Strength Using Arch Models in Reinforced Concrete Beams without Web Reinforcement (아치모델을 이용한 복부보강이 안된 철근 콘크리트 보의 전단강도 산정)

  • 김대중
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.233-240
    • /
    • 1998
  • A rational expression, developed to predict the shear strength of reinforced concrete beams, is derived from the relationship between shear and the rate of change of bending moment along a beam coupled with experimental findings for the arch action. The proposed ultimate shear strength equation, arising from analytical premises and then calibrated with experimental data, is a similar form to the ACI 318 equation derived mainly from empirical approach. The proposed equation depends on the concrete compressive strength, amount of longitudinal steel content, and the shear span-to-depth ratio, and rationally reflects the shear resistance mechanism of combined beam action and arch action in reinforced concrete beams. The proposed equation applied to existing test data and the results were compared with those predicted by the ACI 318 equation and the Zsutty's equation.

The Relationship between Foot Arch Structure and March Fractures - Comparative study between 15(30feet) normal person and the 15(30feet) patients with march fracture - (행군골절 발생과 발아치 구조의 연관성에 대한 연구보고)

  • Bae, Young-Jae;Yoon, Sung-Il
    • Journal of Korean Foot and Ankle Society
    • /
    • v.2 no.2
    • /
    • pp.71-75
    • /
    • 1998
  • The fact that, under similar training activities performed in the same environment, march fractures develop in only a certain percentage of the trainees indicates that intrinsic factors are affecting the prevalence of these fractures. Among these intrinsic factors, the relation between foot arch type and the occurance of march fractures was investigated in this study. From 1997 to 1998, at one infantry medical company of infantry corps in Korea, 15 march fracture patients were detected among infantry soldiers. Quantitative measures of the foot arch (longitudinal) structure of 15(30feet) march fracture patients were established and compared with those of 15(30feet) normal person. The results were as follows. 1. From the lateral X-ray film, three parameters (i.e. calcaneal angle, forefoot angle, height to length ratio)were defined to describe the structure of the longitudinal arch of the foot. 2. The mean value of the calcaneal angle of march fracture group and normal control group showed 16.4 degree, 20.5 degree respectively. The difference between two groups was statistically significant (P>0.006), but those of forefoot angle and height to length ratio were not. 3. In the calcaneal angle twenty-six feet(87%) of march fracture group were lower than 17 degrees but twenty-five feet(83%) of normal control group were more than 17 degrees. That is, march fracture were more prevalent in feet with low calcaneal angle. 4. In the low arch foot, the orthotic device might relieve the energy load carried by the foot, thus reducing the incidence of march fractures, and should be analyzed in further study.

  • PDF

Experimental evaluation of crack effects on the dynamic characteristics of a prototype arch dam using ambient vibration tests

  • Sevim, Baris;Altunisik, Ahmet Can;Bayraktar, Alemdar
    • Computers and Concrete
    • /
    • v.10 no.3
    • /
    • pp.277-294
    • /
    • 2012
  • The aim of the study is to determine the modal parameters of a prototype damaged arch dam by operational modal analysis (OMA) method for some damage scenarios. For this purpose, a prototype arch dam-reservoir-foundation model is constructed under laboratory conditions. Ambient vibration tests on the arch dam model are performed to identify the modal parameters such as natural frequency, mode shape and damping ratio. The tests are conducted for four test-case scenarios: an undamaged dam with empty reservoir, two different damaged dams with empty reservoirs, and a damaged dam with full reservoir. Loading simulating random impact effects is applied on the dam to crack. Cracks and fractures occurred at the middle of the upper part of the dams and distributed through the abutments. Sensitivity accelerometers are placed on the dams' crests to collect signals for measurements. Operational modal analysis software processes the signals collected from the ambient vibration tests, and enhanced frequency domain decomposition and stochastic subspace identification techniques are used to estimate modal parameters of the dams. The modal parameters are obtained to establish a basis for comparison of the results of two techniques for each damage case. Results show that approximately 35-40% difference exists between the natural frequencies obtained from Case 1 and Case 4. The natural frequencies of the dam considerably decrease with increasing cracks. However, observation shows that the filled reservoir slightly affected modal parameters of the dam after severe cracking. The mode shapes obtained are symmetrical and anti-symmetrical. Apparently, mode shapes in Case 1 represent the probable responses of arch dams more accurately. Also, damping ratio show an increase when cracking increases.

Characteristic Behavior of In-plane Buckling of Circular Arch Ribs Subjected to Partial Distributed Loading (부분 등분포 하중을 받는 원형아치 리브의 면내 좌굴 거동특성)

  • Kim, Sung-Hoon;Moon, Ji-Ho;Yoon, Ki-Yong;Lee, Hak-Eun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.3 s.18
    • /
    • pp.57-65
    • /
    • 2005
  • When arch ribs are subjected unsymmetrical load, buckling strength Is lower than strength of arch ribs subjected symmetrical load. However, A few study about the buckling strength of arch ribs subjected unsymmetrical load is performed compare with study about arch ribs subjected symmetrical load. Several researchers(Deutch : 1940, Chang : 1973, Harrison : 1982) studied about arch ribs subjected unsymmetrical load and they found that unsymmetrical loading reduces the critical buckling load. But, their results are limited parabolic arch ribs. This paper focuses on circular arch ribs subjected to unsymmetrical loading. The result shows that the ratio of live and dead load length to cause smallest critical buckling load of arch ribs is $0.6{\sim}0.7$ under geometric nonlinear condition and $0.5{\sim}0.6$ under both material and geometrical nonlinear conditions.