• Title/Summary/Keyword: Arc Length

Search Result 427, Processing Time 0.032 seconds

A Study on Energy Characteristics in Transient States of OF Cable Systems (OF 케이블 계통에서 과도상태시 에너지 특성 검토)

  • Jung, Chae-Kyun;Lee, Jong-Beom;Kang, Ji-Won;Lee, Dong-Il;Seo, Je-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.11
    • /
    • pp.468-475
    • /
    • 2006
  • This paper reviews the energy characteristics of oil filled cables in transient state such as grounding fault and lightning surge. Artificial grounding fault test was firstly performed in 2003 for the analysis of arc voltage and breakdown energy according to the fault current. In this paper, energy of OF cable is variously analysed at joint box based on the actual test. Then more various conditions such as installation types, section lengths and CCPU(Cable Covering Protection Unit) connection types are applied for the simulation using EMTP when the single line to ground fault and direct lightning stroke are occurred on actual underground power cable systems and combined power cable systems, respectively. Finally, the energy by the length of crossbonded lead and grounding lead as well as fault lasting time is also calculated using EMTP simulation.

Minimization of Torque Ripple for an IPMSM with a Notched Rotor Using the Particle Swarm Optimization Method

  • Shin, Pan Seok;Kim, Ho Youn;Kim, Yong Bae
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1577-1581
    • /
    • 2014
  • This paper presents a method to minimize torque ripple of a V-type IPMSM using the PSO (Particle Swarm Optimization) method with FEM. The proposed algorithm includes one objective function and three design variables for a notch on the surface of a rotor. The simulation model of the V-type IPMSM has 3-phases, 8-poles and 48 slots with 2 notches on the one-pole rotor surface. The arc-angle, length and width of the notch are optimized to minimize the torque ripple of the motor. The cogging torque of the model is reduced by 55.6% and the torque ripple is decreased by 15.5 %. Also, the efficiency of the motor is increased by 15.5 %.

VARIOUS CENTROIDS AND SOME CHARACTERIZATIONS OF CATENARY CURVES

  • Bang, Shin-Ok;Kim, Dong-Soo;Yoon, Dae Won
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.237-245
    • /
    • 2018
  • For every interval [a, b], we denote by $({\bar{x}}_A,{\bar{y}}_A)$ and $({\bar{x}}_L,{\bar{y}}_L)$ the geometric centroid of the area under a catenary curve y = k cosh((x-c)/k) defined on this interval and the centroid of the curve itself, respectively. Then, it is well-known that ${\bar{x}}_L={\bar{x}}_A$ and ${\bar{y}}_L=2{\bar{y}}_A$. In this paper, we fix an end point, say 0, and we show that one of ${\bar{x}}_L={\bar{x}}_A$ and ${\bar{y}}_L=2{\bar{y}}_A$ for every interval with an end point 0 characterizes the family of catenaries among nonconstant $C^2$ functions.

Kinematic Displacement Theory of Planar Structures

  • Tayyar, Gokhan Tansel;Bayraktarkatal, Ertekin
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.2
    • /
    • pp.63-70
    • /
    • 2012
  • This paper presents a new curvature based kinematic displacement theory and a numerical method to calculate the planar displacement of structures from a geometrical viewpoint. The theory provides an opportunity to satisfy the kinematic equilibrium of a planar structure using a progressive numerical approach, in which the cross sections are assumed to remain plane, and the deflection curve was evaluated geometrically using the curvature values despite being solved using differential equations. The deflection curve is parameterized with the arc-length, and was taken as an assembly of the chains of circular arcs. Fast and accurate solutions of most complex deflections can be obtained with few inputs.

Elastoplastic nonlinear behavior of planar steel gabled frame

  • Moghaddam, Sina Heyrani;Masoodi, Amir R.
    • Advances in Computational Design
    • /
    • v.4 no.4
    • /
    • pp.397-413
    • /
    • 2019
  • In this paper, static nonlinear analysis of gable frame is performed using OpenSees software. Both geometric and material nonlinearities are considered in analyses. To consider large displacements, co-rotational coordinate transformation is used in software. The effects of symmetric and asymmetric support conditions including clamped and simple supports are studied. On the other hand, the material nonlinearity is reflected on analyses using Giuffre-Menegotto-Pinto steel material. Note that strain hardening characteristics are also considered in this model. Moreover, I-shaped cross-section is assumed for all members. The results are provided for different geometry properties of gable frame including shallow and deep inclined roof. It should be added that buckling and post-buckling behaviors of gable frame are investigated using related equilibrium paths. A comparison study is also implemented on the responses of buckling loads obtained for different support and geometry conditions. To trace snap-through paths completely, a displacement control method entitled arc-length is utilized. Findings show the capability of proposed model in nonlinear analysis of gable frames.

Thermal Impact Evaluation on Buckling of Cylindrical Structures Using Shell Elements (쉘요소를 활용한 원통형 구조물의 좌굴에 대한 열적 영향평가)

  • Cho, Hee-Keun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.7-15
    • /
    • 2021
  • Buckling of cylindrical structures has been extensively researched, because it is an important phenomenon to be considered in structural design. However, the evaluation of thermal effects on the buckling of cylindrical structures has been insufficient; therefore, this study evaluates this thermal effect using shell elements. In addition, the thermal effect on the buckling of temperature-dependent nonlinear materials was evaluated. Nonlinear and linear buckling analyses were performed using the arc-length method to investigate the behavioral characteristics of a cylindrical structure. The basic theory of the linear buckling analysis of a cylindrical structure subjected to thermal stress was derived and presented by applying the thermal stress basic theory.

Automatic Control of the Comnbine(I) -Automatic guidance control of the head-feed combine- (콤바인의 자동제어에 관한 연구(I) -자탈형(自脱型) 콤바인의 주행방향제어(走行方向制御)-)

  • Chung, Chang-Joo;Kim, Seong-Ok;Kim, Soo-Sung
    • Journal of Biosystems Engineering
    • /
    • v.13 no.2
    • /
    • pp.38-45
    • /
    • 1988
  • This study was intended to develop the system automatically controlling travel direction of combine by means of sensing paddy rows. The control system was composed of three detecting levers having different length, micro-switch, microcomputer and electro-hydraulic control system. Sensor and control system developed was tested to estimate optimum design values and its actual performance as installed in combine. The computer simulation and performance test at simulated and actual field were conducted to test for possibility of practical use. The results of the study arc summarized. as follows: 1. The travel traces of combine hiving the conventional sensor with 2 levers and the new sensor detecting the slope of paddy rows were compared through computer simulation. Turning frequency of combine having new sensor was fewer than that of conventional sensor, but the rate of turning for the combine with new sensor was much greater than that of conventional sensor. 2. As sensor was established behind the tip of divider, the sensor itself well followed paddy rows but the tip of divider did not, resulting in divider being deviated from paddy rows. It was analyzed that the sensor should be attached closer to the tip of divider to have a better performance of the control system. 3. The greater the length of sensor lever for given location of sensor attachment and combine forward speed, the higher sensitivity of turning in control system. Moreover, increasing combine speed resulted in a worse performance of control system following paddy rows. Consequently, it was necessary that an optimum length of sensor attachment and for the range of combine operational speed. 4. Field test of combine installed with the sensor and electro-hydraulic system developed in this study showed that it may be operated smoothly and well behaved to paddy rows to 4th gear of combine speed which was 59cm/s. Consequently. it was concluded that the combine with the guidance control system developed in this study may be successfully used for paddy combining.

  • PDF

A complete S-shape feed rate scheduling approach for NURBS interpolator

  • Du, Xu;Huang, Jie;Zhu, Li-Min
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.4
    • /
    • pp.206-217
    • /
    • 2015
  • This paper presents a complete S-shape feed rate scheduling approach (CSFA) with confined jerk, acceleration and command feed rate for parametric tool path. For a Non-Uniform Rational B-Spline (NURBS) tool path, the critical points of the tool path where the radius of curvature reaches extreme values are found firstly. Then, the NURBS curve is split into several NURBS sub-curves or blocks by the critical points. A bidirectional scanning strategy with the limitations of chord error, normal/tangential acceleration/jerk and command feed rate is employed to make the feed rate at the junctions between different NURBS blocks continuous. To improve the efficiency of the feed rate scheduling, the NURBS block is classified into three types: short block, medium block and long block. The feed rate profile corresponding to each NURBS block is generated according to the start/end feed rates and the arc length of the block and the limitations of tangential acceleration/jerk. In addition, two compensation strategies are proposed to make the feed rate more continuous and the arc increment more precise. Once the feed rate profile is determined, a second-order Taylor's expansion interpolation method is applied to generate the position commands. Finally, experiments with two free-form NURBS curves are conducted to verify the applicability and accuracy of the proposed method.

Morphometric Characteristics and Correlation Analysis with Rainfall-runoff in the Han River Basin (한강 유역의 형태학적 특성과 강우-유출의 상관분석)

  • Lee, Ji Haeng;Lee, Woong Hee;Choi, Heung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.237-247
    • /
    • 2018
  • The basin characteristics reflect the attributes of geomorphological pattern of basin and stream networks affect the rainfall-runoff. In order to analyze the relationship between the basin runoff and stream morphometric characteristics, the morphometric characteristics were investigated for 27 water-level observation stations on 19 rivers in the Han River basin using Arc-map. The morphometric characteristics were divided into linear, areal and relief aspects for calculation while the annual mean runoff ratio as a basin response by rainfall was estimated using the measured precipitation and discharge to analyze the rainfall-runoff characteristics. The correlation among the morphometric parameters were schematized to analyze the correlations among them. The multiple regression equation for rainfall-runoff ratio was provided with morphometric parameters of stream length ratio, form factor ratio, shape factor, stream area ratio, and relief ratio and the coefficient of determination was 0.691. The RMSE and MAPE between the measured and the estimated annual runoff rates were found as 0.09, 11.61% respectively, the suggested regression equation showed good estimation.

Effects of radiant exposure and wavelength spectrum of light-curing units on chemical and physical properties of resin cements

  • Lima, Adriano Fonseca;Formaggio, Stephanie Ellen Ferreira;Zambelli, Ligia Franca Aires;Palialol, Alan Rodrigo Muniz;Marchi, Giselle Maria;Saraceni, Cintia Helena Coury;de Oliveira, Marcelo Tavares
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.4
    • /
    • pp.271-277
    • /
    • 2016
  • Objectives: In this study, we evaluated the influence of different radiant exposures provided by single-peak and polywave light-curing units (LCUs) on the degree of conversion (DC) and the mechanical properties of resin cements. Materials and Methods: Six experimental groups were established for each cement (RelyX ARC, 3M ESPE; LuxaCore Dual, Ivoclar Vivadent; Variolink, DMG), according to the different radiant exposures (5, 10, and $20J/cm^2$) and two LCUs (single-peak and polywave). The specimens were made (7 mm in length ${\times}$ 2 mm in width ${\times}$ 1 mm in height) using silicone molds. After 24 hours of preparation, DC measurement was performed using Fourier transform infrared spectrometry. The same specimens were used for the evaluation of mechanical properties (flexural strength, FS; elastic modulus, E) by a three-point bending test. Data were assessed for normality, after which two-way analysis of variance (ANOVA) and post hoc Tukey's test were performed. Results: No properties of the Variolink cement were influenced by any of the considered experimental conditions. In the case of the RelyX ARC cement, DC was higher when polywave LCU was used; FS and E were not influenced by the conditions evaluated. The LuxaCore cement showed greater sensitivity to the different protocols. Conclusions: On the basis of these results, both the spectrum of light emitted and the radiant exposure used could affect the properties of resin cements. However, the influence was material-dependent.