• Title/Summary/Keyword: Arc Energy

Search Result 597, Processing Time 0.024 seconds

A Petrological Study of the Mudeungsan Tuff Focused on Cheonwangbong and Anyangsan (천왕봉과 안양산을 중심으로 한 무등산응회암의 암석학적 연구)

  • Jung, Woochul;Kil, Youngwoo;Huh, Min
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.325-336
    • /
    • 2014
  • Even though Mesozoic Mudeungsan tuff, located within Neungju Basin, has been named several rock names, it should be named as Mudeungsan tuff due to several evidences, such as fiamme, welded texture and rock fragments in the Mudeungsan tuff. Volcanic eruption boundary between the Cheonwangbong and Anyangsan areas is not clear, but petrochemical and mineral chemical evidences with different ages indicate clear petrological boundary between Cheonwangbong and Anyangsan. The Mudeungsan tuffs from Cheonwangbong and Anyangsan is welded crystal tuff with dacitic composition and were generated from cogenetic calc-alkaline magma in the volcanic arc environment. Geochemical events indicate that magma beneath Cheonwangbong was seems to have been evolved from the magma beneath Anyangsan due to fractional crystallization dominated by plagioclase.

IGBT DC Circuit Breaker with Paralleled MOV for 1,800V DC Railway Applications (직류 철도용 MOV 병렬연결 1,800V급 IGBT 직류 고속차단기 연구)

  • Han, Moonseob;Lee, Chang-Mu;Kim, Ju-Rak;Chang, Sang-Hoon;Kim, In-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2109-2112
    • /
    • 2016
  • The rate of rise of the fault current in DC grids is very high compared to AC grids because of the low line impedance of DC lines. In AC grids the arc of the circuit breaker under current interruption is extinguished by the zero current crossing which is provided naturally by the system. In DC grids the zero current crossing must be provided by the circuit breaker itself. Unlike AC girds, the magnetic energy of DC grids is stored in the system inductance. The DC circuit breaker must dissipate the stored energy. In addition the DC breaker must withstand the residual overvoltage after the current interruption. The main contents of this paper are to ${\cdot}$ Explain the theoretical background for the design of DC circuit breaker. ${\cdot}$ Develop the simulation model in PSIM of the real scaled DC circuit breaker for 1,800V DC railway. ${\cdot}$ Suggest design guidelines for the DC circuit breaker based on the experimental work, simulations and design process.

Module Design and Performance Evaluation of Surge Arrester for Loading In Railway Rolling Stock (전철 탑재형 피뢰기의 모듈설계 및 성능평가기술)

  • Cho, H.G.;Kim, S.S.;Han, S.W.;Lee, U.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2038-2040
    • /
    • 2000
  • The main objective of this paper is to design and test a new type of polymer ZnO surge arrester for AC power system of railroad vehicles. Metal oxide surge arrester for most electric power system applications, electric train and subway are now being used extensively to protect overvoltage due to lightning. Surge arresters with porcelain housing must not have explosive breakage of the housing to minimize damage to other equipment when subjected to internal high short circuit current. When breakdown of ZnO elements in a surge arrester occurs due to flashover, fault short current flows through the arrestor and internal pressure of the arrester rises. The pressure rise can usually be limited by fitting a pressure relief diaphragm and transferring the arc from the inside to the outside of the housing. However, there is possibility of porcelain fragmentation caused by the thermal shock, pressure rise. etc. Non-fragmenting of the housing is the most desired way to prevent damage to other equipment. The pressure change which is occurred by flashover become discharge energy. This discharge energy raises to damage arrester housing and arrester housing is dispersed as small fragment. Therefore, the pressure relief design is requested to obstruct housing dispersion. The main research works are focused on the structure design by finite element method, pressure relief of module, and studies of performance of surge arrester for electric railway vehicle.

  • PDF

Nonlinear large deflection buckling analysis of compression rod with different moduli

  • Yao, Wenjuan;Ma, Jianwei;Gao, Jinling;Qiu, Yuanzhong
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.855-875
    • /
    • 2015
  • Many novel materials exhibit a property of different elastic moduli in tension and compression. One such material is graphene, a wonder material, which has the highest strength yet measured. Investigations on buckling problems for structures with different moduli are scarce. To address this new problem, firstly, the nondimensional expression of the relation between offset of neutral axis and deflection curve is derived based on the phased integration method, and then using the energy method, load-deflection relation of the rod is determined; Secondly, based on the improved constitutive model for different moduli, large deformation finite element formulations are developed and combined with the arc-length method, finite element iterative program for rods with different moduli is established to obtain buckling critical loads; Thirdly, material mechanical properties tests of graphite, which is the raw material of graphene, are performed to measure the tensile and compressive elastic moduli, moreover, buckling tests are also conducted to investigate the buckling behavior of this kind of graphite rod. By comparing the calculation results of the energy method and finite element method with those of laboratory tests, the analytical model and finite element numerical model are demonstrated to be accurate and reliable. The results show that it may lead to unsafe results if the classic theory was still adopted to determine the buckling loads of those rods composed of a material having different moduli. The proposed models could provide a novel approach for further investigation of non-linear mechanical behavior for other structures with different moduli.

Study of Crack Propagation and Absorbed Energy in Heat Affected Zone Using a Finite Element Method (유한요소법을 이용한 용접열영향부의 균열진전 및 샤르피 흡수에너지 연구)

  • Jang, Yun-Chan;Lee, Young-Seog
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.541-548
    • /
    • 2009
  • In this study, Charpy impact test and numerical studies were performed to examine the effects of failure behavior and energy absorption on the notch position. For this purpose, carbon steel plate(SA-516 Gr. 70) with thickness of 25mm usually used for pressure vessel was welded by SMAW(Shielded Metal-Arc Welding)method and specimens were fabricated from the welded plate. The Charpy impact tests were then performed with specimens having different notch positions varying within HAZ. A series of three-dimensional FE analysis which simulates the Charpy test and crack propagation are carried out as well. We divided HAZ into two, three and four regions to apply mechanical properties of HAZ to FE-analys. Results reveal that the absorbed energies during impact test depend significantly on the notch position. To obtain the results of reliability, HAZ should be divided into at least three regions.

A Novel Prototype of Duty Cycle Controlled Soft-Switching Half-Bridge DC-DC Converter with Input DC Rail Active Quasi Resonant Snubbers Assisted by High Frequency Planar Transformer

  • Fathy, Khairy;Morimoto, Keiki;Suh, Ki-Young;Kwon, Soon-Kurl;Nakaoka, Mutsuo
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.89-97
    • /
    • 2007
  • This paper presents a new circuit topology of active edge resonant snubbers assisted half-bridge soft switching PWM inverter type DC-DC high power converter for DC bus feeding power plants. The proposed DC-DC power converter is composed of a typical voltage source-fed half-bridge high frequency PWM inverter with a high frequency planar transformer link in addition to input DC busline side power semiconductor switching devices for PWM control scheme and parallel capacitive lossless snubbers. The operating principle of the new DC-DC converter treated here is described by using switching mode equivalent circuits, together with its unique features. All the active power switches in the half-bridge arms and input DC buslines can achieve ZCS turn-on and ZVS turn-off commutation transitions. The total turn-off switching losses of the power switches can be significantly reduced. As a result, a high switching frequency IGBTs can be actually selected in the frequency range of 60 kHz under the principle of soft switching. The performance evaluations of the experimental setup are illustrated practically. The effectiveness of this new converter topology is proved for such low voltage and large current DC-DC power supplies as DC bus feeding from a practical point of view.

Design and Performance Evaluation of Surge Arrester for Loading in Railway Rolling Stock (전철 탑재용 피뢰기의 설계 및 성능평가)

  • Cho, H.G.;Han, S.W.;Lee, U.Y.;Kim, S.S.;Chang, T.B.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.74-77
    • /
    • 2000
  • The main objective of this paper is to design and test a new type of polymer ZnO surge arrester for AC power system of railroad vehicles. Metal oxide surge arrester for most electric power system applications, electric train and must not have explosive breakage of the housing to minimize damage to other equipment when subjected to internal high short circuit current. When breakdown of ZnO elements in a surge arrester occurs due to flashover, fault short current flows through the arrester and internal pressure of the arrester rises. The pressure rise can usually be limited by fitting a pressure relief diaphragm and transferring the arc from the inside to the outside of the housing. However, there is possibility of porcelain fragmentation caused by the thermal shock. pressure rise, etc. Non-fragmenting of the housing is the most desired way to prevent damage to other equipment. The pressure change which is occurred by flashover become discharge energy. This discharge energy raises to damage arrester housing and arrester housing is dispersed as small fragment. Therefore, the pressure relief design is requested to obstruct housing dispersion. The main research works are focused on the structure design by finite element method, pressure relief of module, and studies of performance of surge arrester for electric railway vehicle.

  • PDF

Recycling of Ferrous Scraps (철스크랩의 리사이클링)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.29 no.1
    • /
    • pp.3-16
    • /
    • 2020
  • This work provides an overview of the steel production process, pretreatment and tramp elements of scraps and recycling technology of dust generated from steelmaking process. Steel is the most common metal used by mankind, with the world production of crude steel in 2018 exceeding 1.8 billion tonnes. Recycling of ferrous scraps reduces CO2 emissions by about 42 % and saves about 60 % of energy, compared to production steel from iron ore. Steel scraps are usually recycled to both an electric arc furnace (EAF), scrap-based steelmaking and the basic oxygen furnace (BOF), in ore-based steelmaking. EAF steelmaking, which uses iron scrap as a main raw material, is changing to an energy-saving type with a device for preheating scrap. Dust generated from the steelmaking process is recycled in various ways in the steel mill to recover iron and zinc.

Studies on the Mucilage of the Root of Abelmoschus manihot, MEDIC -[Part V] Kinetics of initial viscosity- (황촉규근(黃蜀葵根) 점액(粘液)에 관한 연구(硏究) -[제오보(第五報)] 초기점도변화(初期粘度變化)의 동역학적고찰(動力學的考察)-)

  • On, Doo-Heayn;Im, Zei-Bin;Sohn, Joo-Hwan
    • Applied Biological Chemistry
    • /
    • v.22 no.1
    • /
    • pp.42-50
    • /
    • 1979
  • The viscosity coefficient of mucilage of Abelmoschus manihot, MEDIC root decrease under the influence of temperature and the other various physical and chemical factors. The rate of viscosity change of the mucilage have been measured at $5^{\circ}{\sim}50^{\circ}C$ in aqueous state under the various conditions. The results are as follows: 1. Relationship between rate of viscosity change of mucilage and temperature can be represent as Andrade equation. 2. Their activation energies of viscosity change of Abelmaschus maihot, MEDIC root A, B, C, D, E, F and G observed are 11.9, 12.1, 11.4, 12.1, 11.6, 13.8 and 13.2 Kcal/mole, respectively. And other activation parameters arc evaluated. 3. The activation energy of naturally mucilage are smaller than that of sterilized mucilage.

  • PDF

Sulfur Isotope Composition of Seafloor Hydrothermal Vents in the Convergent Plate Boundaries of the Western Pacific: A Role of Magma on Generation of Hydrothermal Fluid (서태평양 지판소멸대의 해저열수분출구에서 관찰되는 황동위원소 조성변화: 열수 생성의 다양성과 마그마의 역할)

  • Kim, Jong-Uk;Moon, Jai-Woon;Lee, Kyeong-Yong;Lee, In-Sung
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.145-156
    • /
    • 2012
  • Seafloor hydrothermal system occurs along the volcanic mid-ocean ridge, back-arc spreading center, and other submarine volcanic regions. The hydrothermal system is one of the fundamental processes controlling the transfer of energy and matter between crust/mantle and ocean; it forms hydrothermal vents where various deepsea biological communities are inhabited and precipitates metal sulfide deposits. Hydrothermal systems at convergence plate boundaries show diverse geochemical properties due to recycle of subducted material compared to simple systems at mid-ocean ridges. Sulfur isotopes can be used to evaluate such diversity in generation and evolution of hydrothermal system. In this paper, we review the sulfur isotope composition and geochemistry of hydrothermal precipitates sampled from several hydrothermal vents in the divergent plate boundaries in the western Pacific region. Both sulfide and sulfate minerals of the hydrothermal vents in the arc and backarc tectonic settings commonly show low sulfur isotope compositions, which can be attributed to input of magmatic $SO_2$ gas. Diversity in geochemistry of hydrothermal system suggests an active role of magma in the formation of seafloor hydrothermal system.