• Title/Summary/Keyword: Arbitrary Orientation Angle

Search Result 21, Processing Time 0.03 seconds

Vibration Analysis of Rotating Cantilever Plates with Arbitrary Orientation Angle (임의의 자세를 갖는 외팔평판의 진동해석)

  • Kim, Sung-Kyun;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1331-1337
    • /
    • 2003
  • Linearized equations of motion for the vibration analysis of rotating cantilever plates with arbitrary orientation angle are derived in the present work. Two in-plane stretch variables are introduced to be approximated. The use of the two in-plane stretch variables enables one to derive the equations of motion which include proper motion-induced stiffness variation terms. The equations of motion are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters on the modal characteristics of rotating cantilever plates are investigated through numerical study. The natural frequency loci veering along with the associated mode shape variations, which occur while the rotating speed increases, are also presented and discussed.

Modeling of flexible disk grinding process for automation of hand-grinding (수동연삭공정 자동화를 위한 유연성 디스크가공 모델링)

  • Yoo, Song-Min;Kim, Young-Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.4
    • /
    • pp.376-383
    • /
    • 2000
  • A flexible disk grinding process model has been implemented with varying disk orientation with respect to workpiece surface along with variable feed rate. Before implementing arbitrary disk orientation and translation, disk angle and feed rate variation have been implemented. The disk angle was changed with constant angular velocity only in the entrance stage. The effect of the variable feed rate was added to the geometric schematic. The feed rate was changed either from the entrance stage or from the between edges stage and process performance was evaluated. Effect of changing both angle end feed rate has been also analyzed. Disk trend showing actual disk deflection has also been visualized.

  • PDF

Influence of fiber paths on buckling load of tailored conical shells

  • Naderi, Ali-Asghar;Rahimi, Gholam-Hossein;Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • v.16 no.4
    • /
    • pp.375-387
    • /
    • 2014
  • The purpose of this paper is to propose a method for evaluation of varying stiffness coefficients of tailored conical shells (TCS). Furthermore, a comparison between buckling loads of these shells under axial load with the different fiber path is performed. A circular truncated conical shell subjected to axial compression is taken into account. Three different theoretical path containing geodesic path, constant curvature path and constant angle path has been considered to describe the angle variation along the cone length, along cone generator of a conical shell are offered. In the TCS with the arbitrary fiber path, the thickness and the ply orientation are assumed to be functions of the shell coordinates and influencing stiffness coefficients of the structure. The stiffness coefficients and the buckling loads of shells are calculated basing on classical shells theory (CST) and using finite-element analysis (FEA) software. The obtained results for TCS with arbitrary fiber path, thickness and ply orientation are derived as functions of shell longitudinal coordinate and influencing stiffness coefficients of structures. Furthermore, the buckling loads based on fiber path and ply orientation at the start of tailored fiber get to be different. The extent of difference for tailored fiber with start angle lower than 20 degrees is not significant. The results in this paper show that using tailored fiber placement could be applied for producing conical shells in order to have greater buckling strengths and lower weight. This work demonstrates the use of fiber path definitions for calculated stiffness coefficients and buckling loads of conical shells.

Defects Length Measurement using an Estimation Algorithm of the Camera Orientation and an Inclination Angle of a Laser Slit Beam

  • Kim, Young-Hwan;Yoon, Ji-Sup;Kang, E-Sok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1452-1457
    • /
    • 2004
  • In this paper, a method of measuring the length of defects on the wall and restructuring the defect image is proposed based on the estimation algorithm of a camera orientation which uses the declination angle of a laser slit beam. The estimation algorithm of the horizontally inclined angle of CCD camera adopts a 3-dimensional coordinate transformation of the image plane where both the laser beam and the original image of the defects exist. The estimation equation is obtained by using the information of the beam projected on the wall and the parameters of this equation are experimentally obtained. With this algorithm, the original image of the defect can be reconstructed to an image normal to the wall. From the result of a series of experiments, the measuring accuracy of the defect is measured within 0.5% error bound of real defect size under 30 degree of the horizontally inclined angle. The proposed algorithm provides the method of reconstructing the image taken at any arbitrary horizontally inclined angle to the image normal to the wall and thus, it enables the accurate measurement of the defect lengths only by using a single camera and a laser slit beam.

  • PDF

Defects Length Measurement Using an Estimation Agorithm of the Camera Orientation and an Inclination Angle of a Laser Slit Beam (레이저 슬릿 빔의 경사각과 카메라 자세 추정 알고리듬을 이용한 벽면결함 길이측정)

  • Kim, Young-Hwang;Yoon, Ji-Sup;Kang, E-Sok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.1
    • /
    • pp.37-45
    • /
    • 2002
  • A method of measuring the length of defects on the wall and restructuring the defect image is proposed based on the estimation algorithm of a camera orientation, which uses the declination angle of a laser slit beam. The estimation algorithm of the horizontally inclined angle of CCD camera adopts a 3-dimensional coordinate transformation of the image plane where both the laser beam and the original image of the defects exist. The estimation equation is obtained by using the information of the beam projected on the wall and the parameters of this equation are experimentally obtained. With this algorithm, the original image of the defect can be reconstructed as an image normal to the wall. From the result of a series of experiments, the measuring accuracy of the defect is measured within 0.5% error bound of real defect size under 30 degree of the horizontally inclined angle. The proposed algorithm provides the method of reconstructing the image taken at any arbitrary horizontally inclined angle as the image normal as the wall and thus, it enables the accurate measurement of the defect lengths by using a single camera and a laser slit beam.

Analysis of Laminated Composite Stiffened Plates with arbitrary orientation stiffener (임의방향 보강재를 가지는 복합적층 보강판의 해석)

  • Yhim, Sung-Soon;Chang, Suk-Yoon;Park, Dae-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.147-158
    • /
    • 2004
  • For stiffened plates composed of composite materials, many researchers have used a finite element method which connected isoparametric plate elements and beam elements. However, the finite element method is difficult to reflect local behavior of stiffener because beam elements are transferred stiffness for nodal point of plate elements, especially the application is limited in case of laminated composite structures. In this paper, for analysis of laminated composite stiffened plates, 3D shell elements for stiffener and plate are employed. Reissner-Mindlin's first order shear deformation theory is considered in this study. But when thickness will be thin, isoparamatric plate bending element based on the theory of Reissner-Mindlin is generated by transverse shear locking. To eliminate the shear locking and virtual zero energy mode, the substitute shear strain field is used. A deflection distribution is investigated for simple supported rectangular and skew stiffened laminated composite plates with arbitrary orientation stiffener as not only variation of slenderness and aspect ratio of the plate but also variation of skew angle of skew stiffened plates.

Global Positioning of a Mobile Robot based on Color Omnidirectional Image Understanding (컬러 전방향 영상 이해에 기반한 이동 로봇의 위치 추정)

  • Kim, Tae-Gyun;Lee, Yeong-Jin;Jeong, Myeong-Jin
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.6
    • /
    • pp.307-315
    • /
    • 2000
  • For the autonomy of a mobile robot it is first needed to know its position and orientation. Various methods of estimating the position of a robot have been developed. However, it is still difficult to localize the robot without any initial position or orientation. In this paper we present the method how to make the colored map and how to calculate the position and direction of a robot using the angle data of an omnidirectional image. The wall of the map is rendered with the corresponding color images and the color histograms of images and the coordinates of feature points are stored in the map. Then a mobile robot gets the color omnidirectional image at arbitrary position and orientation, segments it and recognizes objects by multiple color indexing. Using the information of recognized objects robot can have enough feature points and localize itself.

  • PDF

Lateral-torsional buckling analysis of thin-walled composite beam (박벽 복합재료 보의 횡-비틀림 좌굴 해석)

  • 김영빈;이재홍
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.489-496
    • /
    • 2002
  • The lateral buckling of a laminated composite beam is studied. A general analytical model applicable to the lateral buckling of a composite beam subjected to various types of loadings is derived. This model is based on the classical lamination theory, and accounts for the material coupling for arbitrary laminate stacking sequence configuration and various boundary conditions. The effects of the location of applied loading on the buckling capacity are also included in the analysis. A displace-based one-dimensional finite element model is developed to predict critical loads and corresponding buckling modes for a thin-walled composite beam with arbitrary boundary conditions. Numerical results are obtained for thin-walled composites under central point load, uniformly distributed load, and pure bending with angle-ply and laminates. The effects of fiber orientation location of applied load, and types of loads on the critical buckling loads are parametrically studied.

  • PDF

Dynamics Analysis of a Multi-beam System Undergoing Overall Rigid Body Motion Employing Finite Element Method (유한요소법을 사용한 강체운동을 하는 다중보계의 동적 해석)

  • Choe, Sin;Yu, Hong-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2266-2273
    • /
    • 2000
  • Equations of motion of a multi-beam system undergoing overall rigid body motion are derived by employing finite element method. An orientation angle is employed to allow the arbitrary orientation o f the beam element. Modal coordinate reduction technique, which has been successfully utilized in the conventional linear modeling method, is employed for the present modeling method to reduce the computational effort. Different from the conventional linear modeling method, the present modeling method captures the motion-induced stiffness variations which are important for the dynamic analysis of structures undergoing overall rigid body motion. The numerical results are compared to those of a commercial program to verify the reliability of the present method.

Effects of Anisotropic Properties of Composite Skins on Electromagnetic Wave Propagation in the Foam Core Sandwich Structures (폼 코어 샌드위치 구조물에서 복합재료 스킨의 이방성 특성이 전자기파 투과 특성에 미치는 영향에 관한 연구)

  • 신현수;전흥재
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.234-237
    • /
    • 2001
  • In this study, efforts were made to understand the propagation of electromagnetic wave through the foam core sandwich structure by the analytical model. Foam core sandwich structure is composed of glass/epoxy composite skins and foam core. Transmittance and reflectance of the arbitrary linearly polarized incident TEM waves through the unidirectional composites, foam and foam core sandwich structures were determined as functions of thickness, fiber orientation of composites, incident angle and polarization angle by the analytical model. From the results of the analysis, the general tendency of transmittance and reflectance of electromagnetic wave through composites, foam and foam core sandwich structures was obtained.

  • PDF