• Title/Summary/Keyword: Arbitrary Curvature

Search Result 57, Processing Time 0.023 seconds

Interaction fields based on incompatibility tensor in field theory of plasticity-Part I: Theory-

  • Hasebe, Tadashi
    • Interaction and multiscale mechanics
    • /
    • v.2 no.1
    • /
    • pp.1-14
    • /
    • 2009
  • This paper proposes an interaction field concept based on the field theory of plasticity. Relative deformation between two arbitrary scales, e.g., macro and micro fields, is defined which can be implemented in the crystal plasticity-based constitutive framework. Differential geometrical quantities responsible for describing dislocations and defects in the interaction field are obtained, based on which dislocation density and incompatibility tensors are further derived. It is shown that the explicit interaction exists in the curvature or incompatibility tensor field, whereas no interaction in the torsion or dislocation density tensor field. General expressions of the interaction fields over multiple scales with more than three scale levels are derived and implemented into the present constitutive equation.

A Study on the automatic Lane keeping control method of a vehicle based upon a perception net (퍼셉션 넷에 기반한 차량의 자동 차선 위치 제어에 관한 연구)

  • 부광석;정문영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.257-257
    • /
    • 2000
  • The objective of this research is to monitor and control the vehicle motion in order to remove out the existing safety risk based upon the human-machine cooperative vehicle control. A predictive control method is proposed to control the steering wheel of the vehicle to keep the lane. Desired angle of the steering wheel to control the vehicle motion could be calculated based upon vehicle dynamics, current and estimated pose of the vehicle every sample steps. The vehicle pose and the road curvature were calculated by geometrically fusing sensor data from camera image, tachometer and steering wheel encoder though the Perception Net, where not only the state variables, but also the corresponding uncertainties were propagated in forward and backward direction in such a way to satisfy the given constraint condition, maintain consistency, reduce the uncertainties, and guarantee robustness. A series of experiments was conducted to evaluate the control performance, in which a car Like robot was utilized to quit unwanted safety problem. As the results, the robot was keeping very well a given lane with arbitrary shape at moderate speed.

  • PDF

HIGH-ORDER POTENTIAL FLOW MODELS FOR HYDRODYNAMIC UNSTABLE INTERFACE

  • Sohn, Sung-Ik
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.4
    • /
    • pp.225-234
    • /
    • 2012
  • We present two high-order potential flow models for the evolution of the interface in the Rayleigh-Taylor instability in two dimensions. One is the source-flow model and the other is the Layzer-type model which is based on an analytic potential. The late-time asymptotic solution of the source-flow model for arbitrary density jump is obtained. The asymptotic bubble curvature is found to be independent to the density jump of the fluids. We also give the time-evolution solutions of the two models by integrating equations numerically. We show that the two high-order models give more accurate solutions for the bubble evolution than their low-order models, but the solution of the source-flow model agrees much better with the numerical solution than the Layzer model.

ON THE GEOMETRY OF VECTOR BUNDLES WITH FLAT CONNECTIONS

  • Abbassi, Mohamed Tahar Kadaoui;Lakrini, Ibrahim
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1219-1233
    • /
    • 2019
  • Let $E{\rightarrow}M$ be an arbitrary vector bundle of rank k over a Riemannian manifold M equipped with a fiber metric and a compatible connection $D^E$. R. Albuquerque constructed a general class of (two-weights) spherically symmetric metrics on E. In this paper, we give a characterization of locally symmetric spherically symmetric metrics on E in the case when $D^E$ is flat. We study also the Einstein property on E proving, among other results, that if $k{\geq}2$ and the base manifold is Einstein with positive constant scalar curvature, then there is a 1-parameter family of Einstein spherically symmetric metrics on E, which are not Ricci-flat.

Influence of fiber paths on buckling load of tailored conical shells

  • Naderi, Ali-Asghar;Rahimi, Gholam-Hossein;Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • v.16 no.4
    • /
    • pp.375-387
    • /
    • 2014
  • The purpose of this paper is to propose a method for evaluation of varying stiffness coefficients of tailored conical shells (TCS). Furthermore, a comparison between buckling loads of these shells under axial load with the different fiber path is performed. A circular truncated conical shell subjected to axial compression is taken into account. Three different theoretical path containing geodesic path, constant curvature path and constant angle path has been considered to describe the angle variation along the cone length, along cone generator of a conical shell are offered. In the TCS with the arbitrary fiber path, the thickness and the ply orientation are assumed to be functions of the shell coordinates and influencing stiffness coefficients of the structure. The stiffness coefficients and the buckling loads of shells are calculated basing on classical shells theory (CST) and using finite-element analysis (FEA) software. The obtained results for TCS with arbitrary fiber path, thickness and ply orientation are derived as functions of shell longitudinal coordinate and influencing stiffness coefficients of structures. Furthermore, the buckling loads based on fiber path and ply orientation at the start of tailored fiber get to be different. The extent of difference for tailored fiber with start angle lower than 20 degrees is not significant. The results in this paper show that using tailored fiber placement could be applied for producing conical shells in order to have greater buckling strengths and lower weight. This work demonstrates the use of fiber path definitions for calculated stiffness coefficients and buckling loads of conical shells.

Three-Dimensional Vibration Analysis of Thick Shells of Revolution (두꺼운 축대칭 회전쉘의 3차원적 진동해석)

  • 강재훈;양근혁;장경호
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.399-407
    • /
    • 2002
  • A three-dimensional method of analysis is presented for determining the free vibration frequencies and mode shapes of hollow bodies of revolution (i.e., thick shells), not limited to straight line generators or constant thickness. The middle surface of the shell may have arbitrary curvatures, and the wall thickness may vary arbitrarily. Displacement components$U_\Phi, U_z, U_\theta$ in the meridional, normal and circumferential directions, respectively, are taken to be sinusoidal in time, periodic in$\theta$, and algebraic polynomials in the$\Phi$and z directions. Potential(strain) and kinetic energies of the entire body are formulated, and upper bound values of the frequencies are obtained by minimizing the frequencies. As the degrees of the polynomials are increased, frequencies converge to the exact values. Novel numerical results are presented for two types of thick conical shells and thick spherical shell segments having linear thickness variations. Convergence to four digit exactitude is demonstrated for the first five frequencies of both types of shells. The method is applicable to thin shells, as well as thick and very thick ones.

An Experimental Study of Tri-arc Rotating Detonation Engine Using Gaseous Ethylene/Oxygen (기체 에틸렌/산소 Tri-arc 회전 데토네이션 엔진 실험연구)

  • Lee, Eun Sung;Han, Hyung-Seok;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.1
    • /
    • pp.19-28
    • /
    • 2021
  • In rotating detonation engine(RDE), only the detonation wave is moving around the outer wall of the combustor. Neither a mechanical part nor flow is rotating in RDE. Thus, the RDE cross section is not necessary to be circular, but arbitrary closed section is possible. A RDE of tri-arc cross section is designed and As an example of an arbitrary cross sectioned RDE, a RDE of tri-arc cross section is designed in this study, and operational and performance characteristics were examined experimentally. The rotation of the detonation wave is confirmed by dynamic pressure sensor and high-speed camera, while the characteristics of the detonation wave were investigated at the concave and convex surfaces. In the present study, the thrust level of 17.0 N to 96.0 N was obtained depending on the mass flow rate.

Fast Axis Estimation from 3D Axially-Symmetric Object's Fragment (3차원 회전축 대칭 물체 조각의 축 추정 방법)

  • Li, Liang;Han, Dong-Jin;Hahn, Hern-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.748-754
    • /
    • 2010
  • To reduce the computational cost required for assembling vessel fragments using surface geometry, this paper proposes a fast axis estimation method. Using circular constraint of pottery and local planar patch assumption, it finds the axis of the symmetry. First, the circular constraint on each cylinder is used. A circular symmetric pot can be thought of unions of many cylinders with different radii. It selects one arbitrary point on the pot fragment surface and searches a path where a circumference exists on that point. The variance of curvature will be calculated along the path and the path with the minimum variance will be selected. The symmetric axis will pass through the center of that circle. Second, the planar patch assumption and profile curve is used. The surface of fragment is divided into small patches and each patch is assumed as plane. The surface normal of each patch will intersects the axis in 3D space since each planar patch faces the center of the pot. A histogram method and minimization of the profile curve error are utilized to find the probability distribution of the axis location. Experimental results demonstrate the improvement in speed and robustness of the algorithms.

Response Characteristics of the Steel Moment Resisting Frame According to the Stiffness Variation of Pontoo (플로팅 함체의 강성변화에 따른 철골모멘트연성골조의 응답 특성)

  • Lee, Young-Wook;Park, Jeong-Ah;Chae, Ji-Yong;Choi, Ji-Hun
    • Journal of Navigation and Port Research
    • /
    • v.36 no.3
    • /
    • pp.215-223
    • /
    • 2012
  • To examine the interaction of the floating pontoon with a steel moment resisting frame, the static structural analysis is carried out, in which the pressure load are calculated from the forgoing fluid dynamic analysis, varying the period of wave from 3 to 15 second and for 3 cases of depth of pontoon, 1.5, 2.0, 2.5m. As results, it has shown that RAO-pitch has the linear relationship with the increase of moment of the frame and the curvature of pontoon is reversely proportional to the stiffness of pontoon. By synthesizing these results, an estimation method is proposed, which predicts the moment of frame of the different depth of pontoon based on the analysis result of an arbitrary depth of a floating pontoon. The estimation result shows considerably good agreement, compared with the analysis result.

Estimation of the load-deformation responses of flanged reinforced concrete shear walls

  • Wang, Bin;Shi, Qing-Xuan;Cai, Wen-Zhe;Peng, YI-Gong
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.529-542
    • /
    • 2020
  • As limited well-documented experimental data are available for assessing the attributes of different deformation components of flanged walls, few appropriate models have been established for predicting the inelastic responses of flanged walls, especially those of asymmetrical flanged walls. This study presents the experimental results for three large-scale T-shaped reinforced concrete walls and examines the variations in the flexural, shear, and sliding components of deformation with the total deformation over the entire loading process. Based on the observed deformation behavior, a simple model based on moment-curvature analysis is established to estimate flexural deformations, in which the changes in plastic hinge length are considered and the deformations due to strain penetration are modeled individually. Based on the similar gross shapes of the curvature and shear strain distributions over the wall height, a proportional relationship is established between shear displacement and flexural rotation. By integrating the deformations due to flexure, shear, and strain penetration, a new load-deformation analytical model is proposed for flexure-dominant flanged walls. The proposed model provides engineers with a simple, accurate modeling tool appropriate for routine design work that can be applied to flexural walls with arbitrary sections and is capable of determining displacements at any position over the wall height. By further simplifying the analytical model, a simple procedure for estimating the ultimate displacement capacity of flanged walls is proposed, which will be valuable for performance-based seismic designs and seismic capacity evaluations.