• Title/Summary/Keyword: Araliaceae plant

Search Result 78, Processing Time 0.03 seconds

Studies on the Constituents of Acanthopanax koreanum

  • Chung, Bo-Sup;Kim, Young-Ho
    • Korean Journal of Pharmacognosy
    • /
    • v.17 no.1
    • /
    • pp.62-66
    • /
    • 1986
  • Acanthopanax koreanum Nakai (Araliaceae) is a indigenous medicinal plant growing throughout Jeju-Do in Korea. The plant extract is used in rheumatism, tonic, paralysis and sedative agent. From the roots of A. koreanum, lignan compounds, a diterpenoid, and a polyacetylene compound were isolated and their structures were elucidated by using IR, PMR, CMR and MS spectral data.

  • PDF

Vascular Plants of Taebaeksan, Hambaeksan, Geumdaebong(Peak) and Maebongsan in the Baekdudaegan (백두대간 태백산, 함백산, 금대봉 및 매봉산지역의 관속식물상)

  • 김용식;임동옥;오현경;신현탁
    • Korean Journal of Environment and Ecology
    • /
    • v.15 no.4
    • /
    • pp.293-318
    • /
    • 2002
  • As one of the botanical hot spots of the Korean peninsula, the vascular plant species in the areas of Taebaeksan, Hambaeksan, Geumdaebong(Peak) and Maebongsan were summarized as 694 taxa, 89 families, 302 genus, 579 species. 102 varieties and 13 forms. Based on the list of rare and endangered plants from the Forest Research Institute and the Ministry of Environment, 22 species were recorded in the studied areas: Thuja koraiensis(Cupressaceae), Arisaema heterophyllum(Araceae), Disporum ovale(Liliaceae), Tricyrtis dialata(Liliaceae), Lilium distichum(Liliaceae), Anemone koraiensis(Ranunculaceae), Rodgersia podophylla(Saxifragaceae), Rosa marretii(Rosaceae), Viola diamantica(Violaceae), Viola albida(Violaceae), Echinopanax horridum(Araliaceae), Acanthopanax chiisannensis(Araliaceae), Lysimachia coreana(Prinmulaceae), Syringa velutina var. kamibayashii, Halenia corniculata(Gentianaceae), Partrinia saniculaefolia(Valerianaceae), Adenophora grandiflora(Campanulaceae), Cacalia pseudo-taimingasa(Compositae) Iris odaesanensis(Iridaceae), Leontice microrhyncha(Berberidaceae), Rpdgersia tabularis(Saxifragaceae), and Acanthopanax sentico년(Araliaceae), Among them the four species were recorded from the list of the Ministry of Environment. As most of the species were recorded from the mountain-trails, the long-term habitat monitoring for the species is required .

Comprehensive comparative analysis of chloroplast genomes from seven Panax species and development of an authentication system based on species-unique single nucleotide polymorphism markers

  • Nguyen, Van Binh;Giang, Vo Ngoc Linh;Waminal, Nomar Espinosa;Park, Hyun-Seung;Kim, Nam-Hoon;Jang, Woojong;Lee, Junki;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.135-144
    • /
    • 2020
  • Background: Panax species are important herbal medicinal plants in the Araliaceae family. Recently, we reported the complete chloroplast genomes and 45S nuclear ribosomal DNA sequences from seven Panax species, two (P. quinquefolius and P. trifolius) from North America and five (P. ginseng, P. notoginseng, P. japonicus, P. vietnamensis, and P. stipuleanatus) from Asia. Methods: We conducted phylogenetic analysis of these chloroplast sequences with 12 other Araliaceae species and comprehensive comparative analysis among the seven Panax whole chloroplast genomes. Results: We identified 1,128 single nucleotide polymorphisms (SNP) in coding gene sequences, distributed among 72 of the 79 protein-coding genes in the chloroplast genomes of the seven Panax species. The other seven genes (including psaJ, psbN, rpl23, psbF, psbL, rps18, and rps7) were identical among the Panax species. We also discovered that 12 large chloroplast genome fragments were transferred into the mitochondrial genome based on sharing of more than 90% sequence similarity. The total size of transferred fragments was 60,331 bp, corresponding to approximately 38.6% of chloroplast genome. We developed 18 SNP markers from the chloroplast genic coding sequence regions that were not similar to regions in the mitochondrial genome. These markers included two or three species-specific markers for each species and can be used to authenticate all the seven Panax species from the others. Conclusion: The comparative analysis of chloroplast genomes from seven Panax species elucidated their genetic diversity and evolutionary relationships, and 18 species-specific markers were able to discriminate among these species, thereby furthering efforts to protect the ginseng industry from economically motivated adulteration.

A Phylogenetic Relationships of Araliaceae Based on PCR-RAPD and ITS Sequences (PCR-RAPD와 ITS 서열 분석에 의한 두릅나무과 (Araliaceae) 의 유연관계 분석)

  • 김남희;양덕춘;엄안흠
    • Korean Journal of Plant Resources
    • /
    • v.17 no.2
    • /
    • pp.82-93
    • /
    • 2004
  • Phylogenetic relationships among species in Araliaceae were analyzed using PCR-RAPD and sequence of ITS region of nuclear ribosomal DNA based on samples collected in Korea. RAPD analysis showed various polymorphic bands which were able to differentiate species and genus, and specific bands showing variations among individuals within species. Cluster analysis using gel images revealed high molecular variability within species of Aralia eleta. No significant variation was found among cultivated species of Panax ginseng, but they showed high genetic differences with wild type of the species. In ITS analysis, specific sequences for each genus and species were observed and these were allowed to differentiate species and genus. Phylogenetic analysis using ITS sequences showed that Acanthopanax and Kalopanax had a close relationship, and Aralia and Panax are monophyletic, but genus Hedera is different species from other species in family Araliaceae in this study. The results showing close relationship between genera Aralia and Panax were also observed in RAPD analysis. Contrary to the results of RAPD analysis of Panax ginseng, sequence analysis of ITS showed no significant difference between wild mountain ginseng and cultivated species of P. ginseng. Also, both RAPD and ITS analysis of P. ginseng showed no significant genetic variability among cultivation sites. Results indicate that P. ginseng cultivating in Korea is monophyletic. The molecular analysis used in this study agreed on classification using morphological feature. These results suggest that molecular techniques used in this study could be useful for phylogenetic analysis of Araliaceae.

Triterpene Components from the Leaves of Acanthopanax sessiliflorus Seem (오갈피나무 잎의 트리테르펜 성분)

  • Ryoo, Hyo-Seon;Chang, Seung-Yeup;Yook, Chang-Soo;Park, Sang-Young
    • Korean Journal of Pharmacognosy
    • /
    • v.34 no.4 s.135
    • /
    • pp.269-273
    • /
    • 2003
  • The leaves of Acanthopanax sessiliflorus Seem. (Araliaceae), which is native plant to Korea, have not been studied yet on triterpene constituents. Three 3,4-seco-lupane triterpenoids (Compound I-III) were isolated from the MeOH extract of this plant using Diaion HP-20P, silica gel and ODS column chromatographes. Based on physicochemical and spectroscopic data, the chemical structures of these compounds were identified as follows ; chiisanogenin (Compound I), chiisanoside (Compound II), $22{\alpha}-hydroxychiisanoside$ (Compound III).

Phylogenetic analysis of 14 Korean Araliaceae species using chloroplast DNA barcode analysis (엽록체 DNA 바코드 분석을 통한 한국산 두릅나무과 식물 14종의 유연관계 분석)

  • Hwang, Hwan Su;Choi, Yong Eui
    • Journal of Plant Biotechnology
    • /
    • v.43 no.1
    • /
    • pp.82-90
    • /
    • 2016
  • Most Araliaceae plant species distributed in Korea are economically important because of their high medicinal values. This study was conducted to develop barcode markers from sequence analysis of chloroplast DNA in 14 taxa of Araliaceae species grown in South Korea. Sequencing of seven chloroplast DNA regions was performed to establish the DNA barcode markers, as suggested by the Consortium for the Barcode of Life (CBOL). From the sequence analysis of chloroplast DNA, we identified specific sequences and nucleotides that allowed us to discriminate among each other 14 Korean Araliaceae species. The sequence in the region of psbA-trnH revealed the most frequent DNA indels and substitutions of all 7 regions studied. This psbA-trnH marker alone can discriminate among all 14 species. There are no differences between Korean and Chinese Panax ginseng in all seven sequenced chloroplast DNA regions. A phylogenetic tree constructed using the seven chloroplast DNA regions revealed that Tetrapanax papyriferus should be classified as an independent clade. The Aralia and Panax genera showed a close phylogenetic relationship. Five species in the Eleutherococcus genus were more closely related to Kalopanax septemlobus than to any Panax species.

Identification and Characterization of SOD Isoenzymes in Acanthopanax koreanum Plants (섬오갈피나무에서 SOD Isoenzyme의 식별 및 특성규명)

  • 오순자;박영철;김응식;고석찬
    • Korean Journal of Plant Resources
    • /
    • v.12 no.3
    • /
    • pp.234-239
    • /
    • 1999
  • The isoenzyme patterns and activities of superoxide dismutase(SOD) were investigated from leaves of Araliaceae plants. Of the eight isoenzymes, two isoenzymes(SOD 4 and SOD 6) were prevalent to leaves of Araliaceae plants. The patterns of these two isoenzymes were most various in the leaves of Acanthopanax senticosus for. inermis, while their activity was highest in the leaves of A. koreanum. These two isoenzymes were respectively identified as Fe-SOD and CuZn-SOD, based on selective inhibition with KCN or$H_2O_2$. The SOD isoenzyme patterns did not differed among stem barks, root barks and leaves of A. koreanum. However, the activities of Fe-SOD and CuZn-SOD were higher in the root bark and in leaves, respectively. Both of Fe-SOD and CuZn-SOD were stable for 1 hr at 30-4$0^{\circ}C$, while unstable above 5$0^{\circ}C$.

  • PDF

Population Structure, and Emergence and Growth Dynamics of Seedling, and Spatial Distribution of Dendropanax morbifera Lev.(Araliaceae) (황칠나무의 집단구조와 치수의 발생과 생육동태 및 공간분포)

  • 정재민
    • Korean Journal of Plant Resources
    • /
    • v.11 no.3
    • /
    • pp.345-352
    • /
    • 1998
  • A Korean endemic and evergreen small tree ' Dendropanax morbifera $L_{EV}$.(Araliaceae)' is a component of evergreen forest and mainly idstributein sourthern region and islands in Korea. A local population of D. morbifera which is located between evergreen and deciduous forest within 50m x 50m quadrate was investigated to ascertain the change of population structure, emergence and growth dynamics of seedlings and saplings, and pattern of spatial distribution by the temproal and spatial expansion of population . The result of analysis of population structure by Importnace Value(IV), evergreen forest showed a high species diversity of evergreen tree species such as Cinnamomum japonicum, Machilus japonica, Neolitsea serica, Daphniphyllum macropodum, Ligustrum japonicum, and etc, in middle and under story than in upper story where Camelia japonica and Quercus acuta were dominant. And in conterminous deciduous fores, the major component of evergreen forest in this region, Camellia japonica, Quercus acuta, evergreen tree of Lauraceae and etc. were abundant in only under story. IV of D. morbifera differed from among three story. In comparative analysis of emergence and growth dynamics of D. morbifera seedlings and saplings between evergreen and deciduous forest, emergece and density of seedlings were significantly greater in evergreen than in deciduous forest, and growth of height and basal diameter of seedlings and saplings were slightly larger in evergreen than in deciduous forest. The spatial distribution patterns by Moristia's index mapping of indivuduals using a lattice method of XY axis within this population showed that seedlings(age up to 2 years) and saplings (age>2 years and height<1m) both evergreen and deciduous forest were more or less aggregated apart from mature trees, and thougth intermediate trees(height>1m and dbh<10cm) had a aggregated distribution pattern, mature trees(dbh>10cm were uniform. In conclusion , the expansion of D. morbfera population from evergreen to deciduous forest accompanied with a mumber of evergreen woody species, and also, emergence and recruitment, and growth of seedlings were greatly influenced moisture and canopy by around community structure.

  • PDF

Ginsenoside Content of North American Ginseng (Panax quinquefolius L. Araliaceae) in Relation to Plant Development and Growing Locations

  • Jackson, Chung Ja C.;Dini, Jean-Paul;Lavandier, Clara;Faulkner, Harold;Rupasinghe, H.P. vasantha;Proctor, John T.A.
    • Journal of Ginseng Research
    • /
    • v.27 no.3
    • /
    • pp.135-140
    • /
    • 2003
  • North American ginseng (Panax quinquefolius L.) was analysed for total ginsenosides and ten major ginsenosides (R$_{0}$ , Rb$_1$, Rb$_2$, Rc, Rd, Re, Rf, Rg$_1$, pseudoginsenoside F$_{11}$ and gypenoside XVII), and variations in ginsenoside content with age of plant (over a four-year-period) and geographic location (Ontario versus British Columbia) were investigated. In the roots the total ginsenoside content increased with age up to 58-100 mgㆍg$^{-1}$ dry weights in the fourth year, but in leaves it remained constant over time. Roots and leaves, moreover, had different proportions of individual ginsenosides. The most abundant ginsenosides were Rb$_1$ (56mgㆍg$^{-1}$ for Ontario; 37mgㆍg$^{-1}$ for British Columbia) and Re (21mgㆍg$^{-1}$ for Ontario; 15 mgㆍg$^{-1}$ for British Columbia) in roots, and Rd (28-38 mgㆍg$^{-1}$ ), Re (20-25 mgㆍg$^{-1}$ ), and Rb$_2$ (13-19 mgㆍg$^{-1}$ ) in leaves. Measurable quantities of Rf were found in leaves (0.4-1.8 mgㆍg$^{-1}$ ) but not in roots or stems. Our results show that ginsenoside profiles in general, and Rf in particular, could be used for chemical fingerprinting to distinguish the different parts of the ginseng plant, and that ginseng leaves could be valuable sources of the ginsenosides Rd, Re, and Rb$_2$.