• Title/Summary/Keyword: Aquifer

Search Result 749, Processing Time 0.021 seconds

Hydrogeochemistry of Groundwaters at the Gogum island area in Jeonnam, Korea (전남 고금도 지역 지하수의 수리지구화학)

  • Park, Cheon-Young;Ahan, Kun-Sang;Jeong, Youn-Joong;Shin, In-Hyun
    • Journal of the Korean earth science society
    • /
    • v.23 no.6
    • /
    • pp.474-485
    • /
    • 2002
  • The object of this study is to investigate the contamination degree and the interpretation of sea water intrusion phenomena with hydrogeochemical and hydrogen-oxygen stable isotope of coastal aquifer in the Gogum area, Korea. The physical characteristics of groundwaters is the neutral pH condition and transitional Redox environments, and groundwater is affected by sea water & surface water. The chemical properties of groundwaters are showing an increase in contamination owing to the sea water intrusion, waste water from the surface and agricultural chemicals. In the case of chloride, 6 samples of the groundwater in the study area are in excess of the drinking water standard. The Piper diagram shows the contamination in GG-4 and 14 by sea water intrusion. GG-3, 7 and 13 dominate the Na-HCO$_{3}$ type water and regional (GG-14) is indicated to dominate the Na-Cl type water such as sea water. According to the Sl (saturation index), sea water is oversaturated with respect to calcite and dolomite, GG-3, 14 and 18 are approaching the saturation state. The hydrogen-oxygen stable isotope ratio of groundwaters originates in the meteoric water, and groundwaters of GG-1, 5 and 14 display high oxygen isotope value due to surface water trespass and sea water intrusion. The result of this study, GG-14 is contaminated by sea water intrusion, groundwaters expected GG-3, 7 and 13 is in progress to artificial pollution and sea water intrusion.

A Study on Production Well Placement for a Gas Field using Artificial Neural Network (인공신경망 시뮬레이터를 이용한 가스전 생산정 위치선정 연구)

  • Han, Dong-Kwon;Kang, Il-Oh;Kwon, Sun-Il
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.2
    • /
    • pp.59-69
    • /
    • 2013
  • This study presents development of the ANN simulator for well placement of infill drilling in gas fields. The input data of the ANN simulator includes the production time, well location, all inter well distances, boundary inter well distance, infill well position, productivity potential, functional links, reservoir pressure. The output data includes the bottomhole pressure in addition to the production rate. Thus, it is possible to calculate the productivity and bottomhole pressure during production period simultaneously, and it is expected that this model could replace conventional simulators. Training for the 20 well placement scenarios was conducted. As a result, it was found that accuracy of ANN simulator was high as the coefficient of correlation for production rate was 0.99 and the bottomhole pressure 0.98 respectively. From the resultes, the validity of the ANN simulator has been verified. The term, which could produce Maximum Daily Quantity (MDQ) at the gas field and the productivity according to the well location was analyzed. As a result, the MDQ could be maintained for a short time in scenario C-1, which has the three infill wells nearby aquifer boundary, and a long time in scenario A-1. In conclusion, it was found that scenario A maintained the MDQ up to 21% more than those of scenarios B and C which include parameters that might affect the productivity. Thus, the production rate can be maximized by selecting the location of production wells in comprehensive consideration of parameters that may affect the productivity. Also, because the developed ANN simulator could calculate both production rate and bottomhole pressure, respectively, it could be used as the forward simulator in a various inverse model.

Development of a groundwater contamination potential evaluation technique by improving DRASTIC Index for a tunnel excavation area (개선된 DRASTIC 기법을 이용한 터널굴착 예정지역의 지하수 오염 가능성 평가기법 개발에 관한 연구)

  • Park, Jun-Kyung;Park, Young-Jin;Wye, Yong-Gon;Choi, Young-Tae;Lee, Han-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.1
    • /
    • pp.71-88
    • /
    • 2003
  • The DRASTIC system is widely used for assessing regional groundwater pollution susceptibility by using hydrogeological factors such as depth to water, net recharge, aquifer media, soil media, topography, vadose zone media, hydraulic conductivity. This study is providing Modified Drastic Model to which lineament density, land use, influence of groundwater drawdown caused by tunnel excavation are added as additional factors using geographic information system, and then to evaluate groundwater contamination potential of ${\bigcirc}{\bigcirc}$ area. For statistical analysis, vector coverage per each factor is converted to grid layer and after each correlation coefficient between factors, covariance, variance, eigenvalue and eigenvector by principal component analysis of 3 direction, are calculated, correlation between factors is analyzed. Also after correlation coefficients between general DRASTIC layer and rated lineament density layer, between general DRASTIC layer and rated land use layer, between general DRASTIC layer and rated tunnel excavation influence layer are calculated, final modified DRASTIC model is constructed by using them with each weighting. When modified DRASTIC model was compared with general DRASTIC model, contamination potential in modified DRASTIC model is fairly detailed and consequently, vulnerable area which has high contamination potential could be presented concretly.

  • PDF

Interaction between Groundwater and Surface Water in Urban Area (도시지역의 지하수와 하천수의 교류량)

  • Bae, Sang-Keun;Lee, Seung-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.9
    • /
    • pp.919-927
    • /
    • 2008
  • Flow exchanges between stream and groundwater are assessed on urban streams in Daegu, Korea. Two rivers and 25 streams with the total length of 240 km run through the study area. The interaction between surface water and groundwater was estimated using Darcy's method. The study was conducted by dividing the basin into 16 smaller watersheds, and for comparison purposes. Groundwater level, surface water level, hydraulic conductivity, thickness of aquifer, and the distance between the well and the nearest stream were used for quantifying the interaction. To investigations the groundwater interaction in the watersheds, the amount of effluent seepage from groundwater to the stream, the amount of influent seepage from the stream to groundwater, and the amount of annual interaction between surface water and groundwater were computed. The total amount of effluent seepage from the groundwater to stream in the basin was approximately $72{\times}10^6m^3/year$. The total amount of influent seepage from the stream to groundwater was approximately $35{\times}10^6m^3/year$. It appeared that the total amount of annual interaction between surface water and groundwater was approximately $108{\times}10^6m^3/year$ and the total groundwater flow balance was approximately $37{\times}10^6m^3/year$. The annual amount of interaction between the surface water and groundwater was the largest in the Goryung Bridge Basin($29{\times}10^6m^3/year$) and the least in the Dalchang Dam Basin($0.2{\times}10^6m^3/year$). The results show that flow exchanges between stream and groundwater are very active and that there are significant difference among the smaller watersheds. Finally, the results indicate that it is necessary to further investigate to more precisely understand the interaction characteristics between surface water and groundwater in urban areas.

Groundwater Flow Model for the Pollutant Transport in Subsurface Porous Media Theory and Modeling (지하다공질(地下多孔質) 매체(媒體)속에서의 오염물질이동(汚染物質移動) 해석(解析)을 위한 지하수(地下水)흐름 모형(模型))

  • Cho, Won Cheal
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.97-106
    • /
    • 1989
  • This paper is on the modeling of two-dimensional groundwater flow, which is the first step of the development of Dynamic System Model for groundwater flow and pollutant transport in subsurface porous media. The particular features of the model are its versatility and flexibility to deal with as many real-world problems as possible. Points as well as distributed sources/sinks are included to represent recharges/pumping and rainfall infiltrations. All sources/sinks can be transient or steady state. Prescribed hydraulic head on the Dirichlet boundaries and fluxes on Neumann or Cauchy boundaries can be time-dependent or constant. Sources/sinks strength over each element and node, hydraulic head at each Dirichlet boundary node and flux at each boundary segment can vary independently of each other. Either completely confined or completely unconfined aquifers, or partially confined and partially unconfined aquifers can be dealt with effectively. Discretization of a compound region with very irregular curved boundaries is made easy by including both quadrilateral and triangular elements in the formulation. Large-field problems can be solved efficiently by including a pointwise iterative solution strategy as an optional alternative to the direct elimination solution methed for the matrix equation approximating the partial differential equation of groundwater flow. The model also includes transient flow through confining leaky aquifers lying above and/or below the aquifer of interest. The model is verified against three simple cases to which analytical solutions are available. The groundwater flow model shall be combined with the model of pollutant transport in subsurface porous media. Then the combined model, with the applications of the Eigenvalue technique and the Dynamic system theory, shall be improved to the Dynamic System Model which can simulate the real groundwater flow and the pollutant transport accurately and effectively for the analyses and predictions.

  • PDF

Characteristics of Groundwater Quality in a Riverbank Filtration Area (강변여과수 부지 내 충적층 지하수의 수질특성과 변화)

  • Hyun Seung-Gyu;Woo Nam-C.;Shin Woo-Sik;Hamm Se-Yeong
    • Economic and Environmental Geology
    • /
    • v.39 no.2 s.177
    • /
    • pp.151-162
    • /
    • 2006
  • Characteristics and changes of groundwater qualify were investigated in a riverbank filtration area at Daesan-myeon, Changwon City, Korea. The total dissolved solids (TDS) in groundwater samples collected in October were much less than that in March, indicating the mixing with recharged water from precipitation, as well as the changes of dissolved oxygen profiles at monitoring wells from March to October. Redox processes at depths appeared to trigger Fe and Mn contamination of groundwater in riverbank deposits. Amorphous oxyhydroxides md carbonate minerals such as $MnCO_3$ were probably the reactive phases for dissolved Fe and Mn, respectively. Groundwater contamination by nitrate-nitrogen $(NO_3-N)$ was controlled by the redox processes and subsequent denitrification at the sampled depths. Distribution of $NO_3-N$ concentrations at monitoring wells suggested that the nitrate contaminants were originated from agricultural facilities on the riverbank deposits. Some of monitoring wells, DS-2, D-2, DS-3, SJ-1, and SJ-3, were only partially penetrated into the sand/gravel aquifer, and subsequently, could not fully function to detect the water quality changes for the pumping wells. Proper measures, with regulating agricultural activities in the riverbank deposits, should be carried out to prevent groundwater contamination of the riverbank filtration area.

Geochemical Investigation on Arsenic Contamination in the Alluvial Ground-water of Mankyeong River Watershed (만경강유역 충적대수층 지하수의 비소오염현황 및 지구화학적 특성)

  • Moon, Jeong-Tae;Kim, Kang-Joo;Kim, Seok-Hwi;Jeong, Cheon-Sung;Hwang, Gab-Soo
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.673-683
    • /
    • 2008
  • As-rich alluvial groundwaters occurring in the agricultural area of Mankyeong River watershed were geochemically studied. 15 out of 29 investigated wells (52%) showed As levels exceeding the WHO drinking water standard ($10{\mu}g/L$). Their chemistry is characterized by low Eh levels, low $NO_3$ and $SO_4$ concentrations, and high pH, alkalinity, Fe, $NH_4$, and $PO_4$ levels. This suggests that arsenic is enriched by the reductive dissolution of As-bearing Fe-/Mn-(hydro)oxides, the commonest process in Bangladesh and West Bengal of India, of which groundwaters are severely contaminated by As. It was also revealed that As concentrations in the area are strongly regulated by the presence of agrochemicals such as $NO_3$ and $SO_4$.

Classification of Groundwater Level Variation Types Near the Excavated Area of the Temporary Gulpocheon Discharge Channel (굴포천 임시방수로 굴착구간 주변의 지하수 수위 변동 유형 분류)

  • Kim, Chang-Hoon;Lee, Su-Gon;Hahn, Jeong-Sang;Kim, Nam-Ju;Jeon, Byeong-Chu
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.631-641
    • /
    • 2014
  • Characteristics of water-level changes in the Temporary Gulpocheon Discharge Channel were identified by observing and analyzing changes in the subterranean water level induced by hydrological stresses the underground aquifer. The subterranean water level refers to the level at which the pressure of subterranean water passing through the corresponding position has an equipotential value that is in equilibrium with the atmospheric pressure at that location. This water level is not fixed but changes in response to hydrological stress. It can be identified by repeatedly measuring the distance from the observation point to the surface of the subterranean water. The subterranean water-level change equation and the variance range of the hydrological curve of subterranean water over 24 hours at the Gimpo-Gimpo National Groundwater Monitoring Network (NGMN) were used as assessment factors. The variance characteristics of the subterranean water at the 18 monitoring system locations were classified into three impact, observational wish, and non-impact. The impact type accounted for 50% of the subterranean water of and accurately reflected the water-level changes due to hydrological stress, showing that distance is the major controlling factor. The observational wish type accounted for 27.8% of the subterranean water, and one of the two assessment factors did not meet the assessment factors. The nonimpact type accounted for 22.2% of the subterranean water. This type satisfied the two assessment factors and represents subterranean water-level changes response to precipitation.

Change of Seawater Intrusion Range by the Difference of Longitudinal Dispersivity in Hydrodynamic Modeling (수리동역학적 모델링에서 분산지수에 따른 해수침투 범위의 변화)

  • 심병완;정상용;김희준;성익환
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.59-67
    • /
    • 2002
  • As a parameter for hydrodynamic modeling to define the range of seawater intrusion, dispersivities are frequently determined from pre-experiments or theoretical studies because field experiments need a lot of time and expenses. If the dispersivities are inadequate for an aquifer, the numerical results may have some errors. We examined the validity of longitudinal dispersivities by comparing the ranges of seawater intrusion with numerical modeling, field data and apparent resistivity sections. In the numerical modeling the TDS distributions simulated by the Xu's longitudinal dispersivity are more similar to the values of TDS measured at monitoring wet]s and boreholes than those by the Neuman's longitudinal dispersivity. The ranges of seawater intrusion by numerical simulations using Xu's longitudinal dispersivity show that the contour line of 1000 ㎎/L. as TDS is located at 480 m from the coast in May, while at 390 m in July. The difference is originated from the shift of the interface between seawater and fresh water. It moved toward the coast in July because of the seasonal increase of hydraulic gradient according to rainfall. A contour line of 15 ohm-m was used to define the range of seawater intrusion in apparent resistivity sections. From this criterion on the interface between seawater and fresh water, the range of seawater intrusion is located at 450 m from the coast. This result is similar to the range of seawater intrusion simulated by the numerical modeling using Xu's dispersivity. Therefore the range of seawater intrusion shows the difference due to the dispersivities used for the hydrodynamic modeling and the dispersivity generated by the Xu's equation is considered more effective to decide the range of seawater intrusion in this study area.

Groundwater Systems in Seoul Area : Analysis of Hydraulic Properties (서울지역 지하수 시스템 조사 : 수리적 특성 분석)

  • 김윤영;이강근;성익환
    • The Journal of Engineering Geology
    • /
    • v.8 no.1
    • /
    • pp.51-73
    • /
    • 1998
  • Hydrogeological systems in a metrnpolitan area can be understood by analyzing the groundwater disturbing factors such as constructions and land applications, the groundwater usage for domestic and industrial purposes, and the groundwater pumpage to lower the groundwater level for the structural safety of subway and underground facilities. This study is part of the study performed to understand the groundwater system in the Seoul area and it is focusing on the hydraulic properties. Groundwater well inventory, barometric efficiency measurements, pumping and slug tests, and long-term groundwater monitoring have been perfonrmed during the last 2 years. The relations between Han River and the groundwater around the river also have been observed. These observations and test data, together with the information on soil distribution, geology, and logging data are used to construct a database and GIS(Geographic Information System) presentation system using ARC/INFO. Barometric efficiencies appeared to have no special trends associated with well depths, which maeans that the degree of confinement of the crystaline rock aquifer of the Seoul area is distributed locally depending on the developrnent of fractures. Hydraulic conductivities exponentialiy decrease with well depth. The stage of Han River fluctuates according to the tidal movement of nearby seawater but the tidal effects attenuate due to the underwater dams. Groundwater levels in the Seoul area seem to have declined for the last two years,but it is not certain that the declination represents the long-term trend.

  • PDF