• 제목/요약/키워드: Aqueous route

검색결과 50건 처리시간 0.027초

Regulation of precursor solution concentration for In-Zn oxide thin film transistors

  • Chen, Yanping;He, Zhongyuan;Li, Yaogang;Zhang, Qinghong;Hou, Chengyi;Wang, Hongzhi
    • Current Applied Physics
    • /
    • 제18권11호
    • /
    • pp.1300-1305
    • /
    • 2018
  • The tunable electronic performance of the solution-processed semiconductor metal oxide is of great significance for the printing electronics. In current work, transparent thin-film transistors (TFTs) with indium-zinc oxide (IZO) were fabricated as active layer by a simple eco-friendly aqueous route. The aqueous precursor solution is composed of water without any other organic additives and the IZO films are amorphous revealed by the X-ray diffraction (XRD). With systematic studies of atomic force microscopy (AFM), X-ray photoemission spectroscopy (XPS) and the semiconductor property characterizations, it was revealed that the electrical performance of the IZO TFTs is dependent on the concentration of precursor solution. As well, the optimum preparation process was obtained. The concentrations induced the regulation of the electronic performance was clearly demonstrated with a proposed mechanism. The results are expected to be beneficial for development of solution-processed metal oxide TFTs.

Wet preparation of calcium phosphates from aqueous solutions

  • Lee, Byeong Woo;Hong, Il Gok
    • Journal of Ceramic Processing Research
    • /
    • 제20권6호
    • /
    • pp.655-659
    • /
    • 2019
  • Calcium phosphates such as HA (hydroxyapatite), β-TCP (tricalcium phosphate) and biphasic HA/β-TCP, were synthesized by wet chemical precipitation in aqueous solution combined with ball milling process. Nanosize powders of the calcium phosphates were synthesized using Ca(OH)2 and H3PO4. The effects of initial precursor Ca/P ratio (1.30, 1.50 and 1.67), ball milling process and post heat-treatment on the phase evolution behavior of the powders were investigated. The phase of resulting powder was controllable by adjusting the initial Ca/P ratio. HA was the only phase for as-prepared powders in both cases of Ca/P ratios of 1.50 and 1.67. The single HA phase without any noticeable second phase was obtained for the initial Ca/P ratio of 1.67 in the overall heat-treatment range. Pure β-TCP and biphasic calcium phosphate (HA/β-TCP) were synthesized from precursor solutions having Ca/P molar ratios of 1.30 and 1.50, respectively, after having been heat-treated above 700 ℃. The β-TCP phase has appeared on the pre-existing DCPD (dicalcium phosphate dihydrate) and/or HA phase. Dense ceramics having translucency were obtained at a considerably lower sintering temperature. The modified process offered a fast, convenient and economical route for the synthesis of calcium phosphates.

A Study of Upgrading Real Biogas via CO2 Precipitation Route Under Indian Scenario

  • Gehlaut, Avneesh Kumar;Gaur, Ankur;Hasan, Shabih Ul;Park, Jin-Won
    • Korean Chemical Engineering Research
    • /
    • 제56권3호
    • /
    • pp.381-387
    • /
    • 2018
  • Our study focuses on upgrading real biogas obtained under Indian scenario using carbon capture and utilization (CCU) technology to remove carbon dioxide ($CO_2$) and utilize it by forming metal carbonate. Amines such as monoethanolamine (MEA), diethanolamine (DEA), and sodium hydroxide (NaOH) were used to rapidly convert gaseous $CO_2$ to aqueous $CO_2$, and $BaCl_2$ was used as an additive to react with the aqueous $CO_2$ and rapidly precipitating the aqueous $CO_2$. All experiments were conducted at $25^{\circ}C$ and 1 atm. We analyzed the characteristics of the $BaCO_3$ precipitates using X-ray diffractometry (XRD), scanning electron microscopy - Energy dispersive spectroscopy (SEM-EDS) and Fourier-transform infrared spectroscopy (FT-IR) analyses. The precipitates exhibited witherite morphology confirmed by the XRD results, and FT-IR confirmed that the metal salt formed was $BaCO_3$, and EDS showed that there were no traces of impurities present in it. The quantity of the $BaCO_3$ was larger when formed with DEA. Also, a comparison was done with a previous study of ours conducted in Korean conditions. Finally, we observed that the carbonate obtained using real biogas showed similar properties to carbonates available in the market. An economic analysis was done to show the cost effectiveness of the method employed by us.

Ni(OH)2 and NiO Nanostructures: Synthesis, Characterization and Electrochemical Performance

  • Saghatforoush, Lotf Ali;Hasanzadeh, Mohammad;Sanati, Soheila;Mehdizadeh, Robabeh
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권8호
    • /
    • pp.2613-2618
    • /
    • 2012
  • Hydrothermal route have been used in different conditions for preparation of $Ni(OH)_2$ nanostructures. The NiO nanoparticles were obtained by calcining the $Ni(OH)_2$ precursor at $450^{\circ}C$ for 2 h. The effect of sodium dodecyl sulfonate (SDS) as surfactant on the morphology and size of $Ni(OH)_2$ nanoparticles were discussed in detail. X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) spectroscopy were used to characterize the products. The growth mechanism of the as-synthesized nanostructures was also discussed in detail based on the experimental results. Coming up, the NiO nanoparticle modified carbon paste electrode was applied to the determination of captopril in aqueous solution.

Photoelectrochemical characterization of surface-modified CuInS2 nanorod arrays prepared via template-assisted growth and transfer

  • Yang, Wooseok;Kim, Jimin;Oh, Yunjung;Moon, Jooho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.401-401
    • /
    • 2016
  • Although vertically aligned one-dimensional (1D) structure has been considered as efficient forms for photoelectrode, development of efficient 1D nanostructured photocathode are still required. In this sense, we recently demonstrated a simple fabrication route for CuInS2 (CIS) nanorod arrays from aqueous solution by template-assisted growth-and-transfer method and their feasibility as a photoelectrode for water splitting. In this study, we further evaluated the photoelectrochemical properties surface-modified CIS nanorod arrays. Surface modification with CdS and ZnS was performed by successive ion layer adsorption and reaction (SILAR) method, which is well known as suitable technique for conformal coating throughout nanoporous structure. With surface modification of CdS and ZnS, both photoelectrochemical performance and stability of CuInS2 nanorod arrays were improved by shifting of the flat-band potential, which was analyzed both onset potential and Mott-schottky plot.

  • PDF

Immunoassay for Monitoring Pesticide Contamination in Agricultural Products

  • Park, Eun-Kee;Lee, Hu-Jang
    • 한국환경보건학회지
    • /
    • 제34권6호
    • /
    • pp.433-438
    • /
    • 2008
  • Much of the increase in agricultural productivity over the past half century has been due to the control of the pests with synthetic pesticides. The use of these pesticides has caused environmental problems and public health concern. The guidelines of maximum residue levels of pesticides in agricultural products has been well documented but more careful monitoring of their residues is required. Pyrethorid class pesticides are dominant in modern agricultural industry but public health concerns have been recently considered. The major route of pesticide exposure is the diet and with improved surveillance of pyrethorid residues in agricultural products their exposure should be controlled and minimized. In suitable products with reduced matrix effects such as agricultural products, aqueous samples, fruits and vegetables the use of immunoassays for pyrethorid residue monitoring could satisfy this requirement. Immunoassays have several advantages, namely they are highly sensitive, selective and cost-effective and enable large-scale sample handling and analysis in the laboratory.

Field Emission from Selectively-patterned ZnO Nanorods Synthesized by Solution Chemistry Route

  • Kim, Do-Hyung
    • 한국재료학회지
    • /
    • 제16권7호
    • /
    • pp.408-411
    • /
    • 2006
  • An effective wet-chemical approach is demonstrated for growing large-area, selectively-patterned, and low-temperature-synthesized ZnO nanorods (ZNRs). The growth of ZNRs was enhanced on a Co layer. The selectivity and density were readily controlled by the control of the temperature when the substrate transfers into aqueous solution. The cross-sectional transmission electron microscopy image shows that single crystalline ZNRs grown along [0001] have good adhesion at interface between ZNRs/substrate. The turn-on field was 4 $V/{\mu}m$ at the emission current density of 1 ${\mu}A/cm^2$. The stable emission was obtained at 0.11 $mA/cm^2$ under 7.2 $V/{\mu}m$ over 10 hr. These results suggest that selectively-patterned ZNRs have the potential for use as field emitters in large-area field emission displays.

Fabrication of Functional Nanomaterials by Peptide Self-Assembly

  • 박찬범
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.8.1-8.1
    • /
    • 2009
  • The self-assembly of peptide-based building blocks into nanostructures is an attractive route for fabricating novel materials because of their capacity for molecular recognition and functional flexibility as well as the mild conditions required in the fabrication process. Among various peptide-based building blocks forming nanostructures, the simplest building blocks are aromatic dipeptides like diphenylalanine, which can readily self-assemble into nanotubes in aqueous solutions at ambient conditions. Recently, we have developed a high-temperature solid-phase self-assembly process for diphenylalanine. Through this novel process, we succeeded in the growth of vertically well-aligned, uniform nanowires from amorphous peptide thin film. To demonstrate the versatility of our approach, we also fabricated a micropattern of peptide nanowires by combining our solid-phase growth method and simple soft lithographic techniques. We believe that our studies on peptide self-assembly will provide a new horizon for peptide-based nanofabrication.

  • PDF

실리카-골드 복합체의 합성 연구 (Preparation of Silica-Gold Composite particles)

  • 김대욱;심승보;전용진
    • 한국산학기술학회논문지
    • /
    • 제12권11호
    • /
    • pp.5365-5369
    • /
    • 2011
  • 실리카-골드 복합체 입자를 함침법에 의하여 합성하였고, 용매와 전구체가 실리카-골드 입자 합성에 미치는 영향이 연구되었다. 구형 실리카 입자를 지지체로 하여 PVP, hydrogentetrachloroaurate(III) hydrate 수용액을 전구체로 사용했을 때, 연한 분홍색 색상을 띄는 실리카-골드 입자가 성공적으로 합성되었다. 합성된 복합체의 특성은 FE-SEM, FE-TEM과 XRD를 통하여 분석하였다.

Ultrathin graphene-like 2D porous carbon nanosheets and its excellent capacitance retention for supercapacitor

  • Gopalakrishnan, Arthi;Badhulika, Sushmee
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.257-266
    • /
    • 2018
  • Here, a controlled green synthesis route involving hydrothermal pre-carbonization cum pyrolysis is reported that converts cucumber into graphene-like carbon nanosheets for supercapacitor application. Transmission electron microscopy analysis reveals the formation of ultra-thin carbon nanosheets with distributed pores. This cucumber derived carbon exhibits high specific capacitance of $143F\;g^{-1}$ in aqueous electrolyte. The two-electrode symmetric cell exhibits a specific capacitance of $58F\;g^{-1}$ at high current density, and high capacitance retention of 97% after 1000 cycles. This simple low-cost process involving widely available cucumber as biomass precursor is a promising, commercially viable approach for developing high-performance supercapacitors.