DOI QR코드

DOI QR Code

Regulation of precursor solution concentration for In-Zn oxide thin film transistors

  • Chen, Yanping (State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University) ;
  • He, Zhongyuan (State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University) ;
  • Li, Yaogang (Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University) ;
  • Zhang, Qinghong (Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University) ;
  • Hou, Chengyi (Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University) ;
  • Wang, Hongzhi (State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University)
  • Received : 2018.05.23
  • Accepted : 2018.07.12
  • Published : 2018.11.30

Abstract

The tunable electronic performance of the solution-processed semiconductor metal oxide is of great significance for the printing electronics. In current work, transparent thin-film transistors (TFTs) with indium-zinc oxide (IZO) were fabricated as active layer by a simple eco-friendly aqueous route. The aqueous precursor solution is composed of water without any other organic additives and the IZO films are amorphous revealed by the X-ray diffraction (XRD). With systematic studies of atomic force microscopy (AFM), X-ray photoemission spectroscopy (XPS) and the semiconductor property characterizations, it was revealed that the electrical performance of the IZO TFTs is dependent on the concentration of precursor solution. As well, the optimum preparation process was obtained. The concentrations induced the regulation of the electronic performance was clearly demonstrated with a proposed mechanism. The results are expected to be beneficial for development of solution-processed metal oxide TFTs.

Keywords

Acknowledgement

Supported by : Natural Science Foundation of China, The Shanghai Natural Science Foundation, Science and Technology Commission of Shanghai Municipality, Shanghai Municipal Education Commission, Shanghai Natural Science Foundation

References

  1. S.Y. Park, B.J. Kim, K. Kim, M.S. Kang, K.H. Lim, T.I. Lee, J.M. Myoung, H.K. Baik, J.H. Cho, Y.S. Kim, Low-temperature, solution-processed and alkali metal doped ZnO for high-performance thin-film transistors, Adv. Mater. 24 (2012) 834-838. https://doi.org/10.1002/adma.201103173
  2. C.L. Lin, Y.C. Chen, A novel ltps-tft pixel circuit compensating for tft thresholdvoltage shift and oled degradation for amoled, IEEE Electron. Device Lett. 28 (2007) 129-131. https://doi.org/10.1109/LED.2006.889523
  3. Y.G. Mo, M. Kim, C.K. Kang, J.H. Jeong, Y.S. Park, C.G. Choi, H.D. Kim, S.S. Kim, Amorphous-oxide TFT backplane for large-sized AMOLED TVs, J. Soc. Inf. Disp. 19 (2011) 16-19. https://doi.org/10.1889/JSID19.1.16
  4. H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, H. Hosono, High-mobility thin-film transistor with amorphous $InGaZnO_4$ channel fabricated by room temperature rf-magnetron sputtering, Appl. Phys. Lett. 89 (2006) 112-123.
  5. T. Ivanova, A. Harizanova, T. Koutzarova, B. Vetruyen, Optical and structural study of Ga and in co-doped ZnO films, Colloid. Surface. Physicochem. Eng. Asp. 532 (2017) 357-362. https://doi.org/10.1016/j.colsurfa.2017.04.068
  6. J.K. Chang, D. Kang, I. Song, J.C. Park, H. Lim, S. Kim, E. Lee, R. Chung, J.C. Lee, Y. Park, Highly Stable $Ga_2O_3-In_2O_3-zno$ TFT for Active-matrix Organic Light-emitting Diode Display Application, Electron Devices Meeting, 2007.
  7. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors, Nature 432 (2004) 488-492. https://doi.org/10.1038/nature03090
  8. T. Rembert, C. Battaglia, A. Anders, A. Javey, Room temperature oxide deposition approach to fully transparent, all-oxide thin-film transistors, Adv. Mater. 27 (2015) 6090-6095. https://doi.org/10.1002/adma.201502159
  9. P.K. Nayak, Z. Wang, H.N. Alshareef, Indium-free fully transparent electronics deposited entirely by atomic layer deposition, Adv. Mater. 28 (2016) 7736-7744. https://doi.org/10.1002/adma.201600503
  10. H. Ning, J. Chen, Z. Fang, R. Tao, W. Cai, R. Yao, S. Hu, Z. Zhu, Y. Zhou, C. Yang, J. Peng, Direct inkjet printing of silver source/drain electrodes on an amorphous InGaZnO layer for thin-film transistors, Materials 10 (2017) 51-57. https://doi.org/10.3390/ma10010051
  11. B. Wang, X. Yu, P. Guo, W. Huang, L. Zeng, N. Zhou, L. Chi, M.J. Bedzyk, R.P.H. Chang, T.J. Marks, A. Facchetti, Solution-processed all-oxide transparent high-performance transistors fabricated by spray-combustion synthesis, Adv. Electron. Mater. 2 (2016) 1500427-1500435. https://doi.org/10.1002/aelm.201500427
  12. W. Huang, L. Zeng, X. Yu, P. Guo, B. Wang, Q. Ma, R.P.H. Chang, J. Yu, M.J. Bedzyk, T.J. Marks, A. Facchetti, Metal oxide transistors via polyethylenimine doping of the channel layer: interplay of doping, microstructure, and charge transport, Adv. Funct. Mater. 26 (2016) 6179-6187. https://doi.org/10.1002/adfm.201602069
  13. G. Liu, A. Liu, H. Zhu, B. Shin, E. Fortunato, R. Martins, Y. Wang, F. Shan, Lowtemperature, nontoxic water-induced metal-oxide thin films and their application in thin-film transistors, Adv. Funct. Mater. 25 (2015) 2564-2572. https://doi.org/10.1002/adfm.201500056
  14. H. Pu, Q. Zhou, L. Yue, Q. Zhang, Solution-processed indium gallium zinc oxide thin-film transistors with infrared irradiation annealing, Semicond. Sci. Technol. 28 (2013) 105002-105006. https://doi.org/10.1088/0268-1242/28/10/105002
  15. C.G. Choi, S.J. Seo, B.S. Bae, Solution-processed indium-zinc oxide transparent thinfilm transistors, Electrochem. Solid State Lett. 11 (2008) 7-9.
  16. Y. Hwan Hwang, J.S. Seo, J. Moon Yun, H. Park, S. Yang, S.H. Ko Park, B.S. Bae, An 'aqueous route' for the fabrication of low-temperature-processable oxide flexible transparent thin-film transistors on plastic substrates, NPG Asia Mater. 5 (2013) 45-52. https://doi.org/10.1038/am.2013.11
  17. G. Wang, N. Persson, P.H. Chu, N. Kleinhenz, B. Fu, M. Chang, N. Deb, Y. Mao, H. Wang, M.A. Grover, Microfluidic crystal engineering of ${\pi}$-conjugated polymers, ACS Nano 9 (2015) 8220-8230. https://doi.org/10.1021/acsnano.5b02582
  18. C.S. Li, Y.N. Li, Y.L. Wu, B.S. Ong, R.O. Loutfy, Fabrication conditions for solutionprocessed high-mobility ZnO thin-film transistors, J. Mater. Chem. 19 (2009) 1626-1634. https://doi.org/10.1039/b812047a
  19. Y.H. Hwang, H.G. Im, H. Park, Y.Y. Nam, B.S. Bae, The effect of metal composition on bias stability of solution processed indium oxide based thin film transistors, ECS J. Solid-State Sci. Technol. 2 (2013) 200-204. https://doi.org/10.1149/2.013311jss
  20. M. Niederberger, N. Pinna, Metal Oxide Nanoparticles in Organic Solvents, Springer-Verlag, London, 2009.
  21. B.Y. Su, S.Y. Chu, Y.D. Juang, L. Han, Improved negative bias stress stability of IZO thin film transistors via post-vacuum annealing of solution method, ECS J. Solid- State Sci. Technol. 2 (2013) 99-103.
  22. M. Morales Masis, S. Martin De Nicolas, J. Holovsky, S. De Wolf, C. Ballif, Lowtemperature high-mobility amorphous IZO for silicon heterojunction solar cells, IEEE J. Photovolt. 5 (2015) 1340-1347. https://doi.org/10.1109/JPHOTOV.2015.2450993
  23. K. Heo, K.S. Cho, J.Y. Choi, S. Han, Y.S. Yu, Y. Park, G. Yoo, J.H. Park, S.W. Hwang, S.Y. Lee, Temperature-dependent electrical characterization of amorphous indium zinc oxide thin-film transistors, IEEE Trans. Electron. Dev. 64 (2017) 3183-3188. https://doi.org/10.1109/TED.2017.2717935
  24. G. Wang, W. Huang, N.D. Eastham, S. Fabiano, E.F. Manley, L. Zeng, B. Wang, X. Zhang, Z. Chen, R. Li, R.P.H. Chang, L.X. Chen, M.J. Bedzyk, F.S. Melkonyan, A. Facchetti, T.J. Marks, Aggregation control in natural brush-printed conjugated polymer films and implications for enhancing charge transport, Proc. Natl. Acad. Sci. U.S.A. 114 (2017) 10066-10073. https://doi.org/10.1073/pnas.1713634114
  25. K.H. Lim, J.E. Huh, J. Lee, N.K. Cho, J.W. Park, B.I. Nam, E. Lee, Y.S. Kim, Strong influence of humidity on low-temperature thin-film fabrication via metal aqua complex for high performance oxide semiconductor thin-film transistors, ACS Appl. Mater. Interfaces 9 (2016) 548-557.
  26. D.P. Birnie, Rational solvent selection strategies to combat striation formation during spin coating of thin films, J. Mater. Res. 16 (2001) 1145-1154. https://doi.org/10.1557/JMR.2001.0158
  27. S. Jeong, Y.G. Ha, J. Moon, A. Facchetti, T.J. Marks, Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors, Adv. Mater. 22 (2010) 1346-1350. https://doi.org/10.1002/adma.200902450
  28. S.Y. Park, S. Kim, J. Yoo, K.H. Lim, E. Lee, K. Kim, J. Kim, Y.S. Kim, Aqueous zinc ammine complex for solution-processed ZnO semiconductors in thin film transistors, RSC Adv. 4 (2014) 11295-11299. https://doi.org/10.1039/c3ra47437b
  29. P.T. Liu, Y.T. Chou, L.F. Teng, Environment-dependent metastability of passivationfree indium zinc oxide thin film transistor after gate bias stress, Appl. Phys. Lett. 95 (2009) 233504-233506. https://doi.org/10.1063/1.3272016
  30. L. Liu, Z. Mei, A. Tang, A. Azarov, A. Kuznetsov, Q.K. Xue, X. Du, Oxygen vacancies: the origin of n-type conductivity in ZnO, Phys. Rev. B 93 (2016) 1-7.
  31. E. Chong, Y.S. Chun, Y.L. Sang, Effect of trap density on the stability of siinzno thinfilm transistor under temperature and bias-induced stress, Electrochem. Solid State Lett. 14 (2011) 96-102.
  32. E. Chong, Y.S. Chun, S.H. Kim, Y.L. Sang, Effect of oxygen on the threshold voltage of a-IGZO TFT, J. Electron. Eng. Technol. 6 (2011) 539-542. https://doi.org/10.5370/JEET.2011.6.4.539