• Title/Summary/Keyword: Aquaculture condition

Search Result 293, Processing Time 0.026 seconds

Analysis of the operating factors of dissolved air flotation (DAF) process for effluent quality improvement from aquaculture rearing tank (양식장 배출수 수질관리를 위한 용존공기부상 공법의 운전 인자 영향 분석)

  • Ki, Jae-Hong;Kim, Hyoung-Jun;Lee, Ju-Young;Han, Moo-Young;Gang, Hee-Woong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.107-113
    • /
    • 2012
  • Pollutants in aquaculture system effluent mostly originated from solid wastes including uneaten feed and excreta of cultured species. In this research, DAF(Dissolved Air Flotation) unit is suggested as an integrated solid control unit especially as a form of IIBG(Inline Injection Bubble Generation) process in aquaculture system. Solid removal performance of DAF unit was examined under various operation and salinity conditions with turbidity and suspended solid. Solid waste removal efficiencies were found to be affected by operation conditions including saturator pressure, recycle ratio, coagulant concentration. Solid removal efficiency was higher under higher saturator pressure and recycle ratio under which condition larger number of bubbles is generated. Coagulant is thought to have important role in creating bubble-particle aggregate by showing better removal efficiency with higher concentration. However higher saline water showed less effectiveness in removing solids by DAF(IIBG). Application of DAF(IIBG) process also showed additional effect in phosphate removal and DO(Dissolved Oxygen) supply. Phosphate existed in polluted water was removed up to 46% after treatment, which is thought to attribute to aluminium phosphate precipitation. And DO concentration was found to increase over 50% of initial saturation concentration after the injection of micro-bubbles. Through experiments on solid removal from aquaculture effluent, DAF(IIBG) process is estimated to be effective solid control method. This property can help aquaculture system being installed and operated simply and effectively.

Immersion rate of Protothaca jedoensis spat on Different Grain Sizes (살조개, Protothaca jedoensis 치패의 저질입도에 따른 잠입율)

  • Rha, Sung-Ju;An, Yun-Keun;Park, Il-Woong;Kim, Jung;Choi, Sang-Duk
    • Journal of Aquaculture
    • /
    • v.20 no.2
    • /
    • pp.127-131
    • /
    • 2007
  • In order to obtain the basic biological data for effective seed production of Protothaca jedoensis, the influence of sediment condition on its immersion rate was investigated. Immersion rate of P. jedoensis spats was investigated in the different substrate groups; mud, fine sand, medium sand and coarse. In 72 hours, immersion rate and survival rate of spat was 90.0 and 90.0, 76.7 and 98.3, 61.7 and 86.7, and 85.0 and 93.3%, respectively. And also, survival rates of the groups were 90.0%(mud), 98.3%(fine sand), 86.7% (medium sand) and 93.3% (coarse sand) respectively. The immersion time and rate of spat was increased with an increase in shell length.

Physiological Responses of Porphyra yezoensis Ueda (Bangiales, Rhodophyta) Exposed to High Ammonium Effluent in a Seaweed-based Integrated Aquaculture System

  • Kang, Yun-Hee;Park, Sang-Rul;Oak, Jung-Hyun;Seo, Tae-Ho;Shin, Jong-Ahm;Chung, Ik-Kyo
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.1
    • /
    • pp.70-77
    • /
    • 2009
  • Porphyra yezoensis is known to act as a biofilter against nutrient-rich effluent in seaweed-based integrated aquaculture systems. However, few studies have examined its physiological status under such conditions. In this study, we estimated the photosynthetic activity of P. yezoensis by chlorophyll fluorescence of PSII (${\Delta}F/F'm$ and relative $ETR_{max}$) using the Diving-PAM fluorometer (Walz, Germany). In addition, bioremediation capacity, tissue nutrients, and C:N ratio of P. yezoensis were investigated. The ammonium concentration in seawater of seaweed tank 4 decreased from $72.1{\pm}2.2$ to $33.8{\pm}0.4{\mu}M$ after 24 hours. This indicates the potential role of P. yezoensis in removing around 43% of ammonium from the effluents. Tissue carbon contents in P. yezoensis were constant during the experimental period, while nitrogen contents had increased slightly by 24 hours. In comparison with the initial values, the ${\Delta}F/F'm$ and $rETR_{max}$ of P. yezoensis had increased by about 20 and 40%, respectively, after 24 hours. This indicates that P. yezoensis condition improved or remained constant. These results suggest that chlorophyll fluorescence is a powerful tool in evaluating the physiological status of seaweeds in a seaweed-based integrated aquaculture system.

A study on Development Process of Fish Aquaculture in Japan - Case by Seabream Aquaculture - (일본 어류 양식업의 발전과정과 산지교체에 관한 연구 : 참돔양식업을 사례로)

  • 송정헌
    • The Journal of Fisheries Business Administration
    • /
    • v.34 no.2
    • /
    • pp.75-90
    • /
    • 2003
  • When we think of fundamental problems of the aquaculture industry, there are several strict conditions, and consequently the aquaculture industry is forced to change. Fish aquaculture has a structural supply surplus in production, aggravation of fishing grounds, stagnant low price due to recent recession, and drastic change of distribution circumstances. It is requested for us to initiate discussion on such issue as “how fish aquaculture establishes its status in the coastal fishery\ulcorner, will fish aquaculture grow in the future\ulcorner, and if so “how it will be restructured\ulcorner” The above issues can be observed in the mariculture of yellow tail, sea scallop and eel. But there have not been studied concerning seabream even though the production is over 30% of the total production of fish aquaculture in resent and it occupied an important status in the fish aquaculture. The objectives of this study is to forecast the future movement of sea bream aquaculture. The first goal of the study is to contribute to managerial and economic studies on the aquaculture industry. The second goal is to identify the factors influencing the competition between production areas and to identify the mechanisms involved. This study will examine the competitive power in individual producing area, its behavior, and its compulsory factors based on case study. Producing areas will be categorized according to following parameters : distance to market and availability of transportation, natural environment, the time of formation of producing areas (leaderㆍfollower), major production items, scale of business and producing areas, degree of organization in production and sales. As a factor in shaping the production area of sea bream aquaculture, natural conditions especially the water temperature is very important. Sea bream shows more active feeding and faster growth in areas located where the water temperature does not go below 13∼14$^{\circ}C$ during the winter. Also fish aquaculture is constrained by the transporting distance. Aquacultured yellowtail is a mass-produced and a mass-distributed item. It is sold a unit of cage and transported by ship. On the other hand, sea bream is sold in small amount in markets and transported by truck; so, the transportation cost is higher than yellow tail. Aquacultured sea bream has different product characteristics due to transport distance. We need to study live fish and fresh fish markets separately. Live fish was the original product form of aquacultured sea bream. Transportation of live fish has more constraints than the transportation of fresh fish. Death rate and distance are highly correlated. In addition, loading capacity of live fish is less than fresh fish. In the case of a 10 ton truck, live fish can only be loaded up to 1.5 tons. But, fresh fish which can be placed in a box can be loaded up to 5 to 6 tons. Because of this characteristics, live fish requires closer location to consumption area than fresh fish. In the consumption markets, the size of fresh fish is mainly 0.8 to 2kg.Live fish usually goes through auction, and quality is graded. Main purchaser comes from many small-sized restaurants, so a relatively small farmer and distributer can sell it. Aquacultured sea bream has been transacted as a fresh fish in GMS ,since 1993 when the price plummeted. Economies of scale works in case of fresh fish. The characteristics of fresh fish is as follows : As a large scale demander, General Merchandise Stores are the main purchasers of sea bream and the size of the fish is around 1.3kg. It mainly goes through negotiation. Aquacultured sea bream has been established as a representative food in General Merchandise Stores. GMS require stable and mass supply, consistent size, and low price. And Distribution of fresh fish is undertook by the large scale distributers, which can satisfy requirements of GMS. The market share in Tokyo Central Wholesale Market shows Mie Pref. is dominating in live fish. And Ehime Pref. is dominating in fresh fish. Ehime Pref. showed remarkable growth in 1990s. At present, the dealings of live fish is decreasing. However, the dealings of fresh fish is increasing in Tokyo Central Wholesale Market. The price of live fish is decreasing more than one of fresh fish. Even though Ehime Pref. has an ideal natural environment for sea bream aquaculture, its entry into sea bream aquaculture was late, because it was located at a further distance to consumers than the competing producing areas. However, Ehime Pref. became the number one producing areas through the sales of fresh fish in the 1990s. The production volume is almost 3 times the production volume of Mie Pref. which is the number two production area. More conversion from yellow tail aquaculture to sea bream aquaculture is taking place in Ehime Pref., because Kagosima Pref. has a better natural environment for yellow tail aquaculture. Transportation is worse than Mie Pref., but this region as a far-flung producing area makes up by increasing the business scale. Ehime Pref. increases the market share for fresh fish by creating demand from GMS. Ehime Pref. has developed market strategies such as a quick return at a small profit, a stable and mass supply and standardization in size. Ehime Pref. increases the market power by the capital of a large scale commission agent. Secondly Mie Pref. is close to markets and composed of small scale farmers. Mie Pref. switched to sea bream aquaculture early, because of the price decrease in aquacultured yellou tail and natural environmental problems. Mie Pref. had not changed until 1993 when the price of the sea bream plummeted. Because it had better natural environment and transportation. Mie Pref. has a suitable water temperature range required for sea bream aquaculture. However, the price of live sea bream continued to decline due to excessive production and economic recession. As a consequence, small scale farmers are faced with a market price below the average production cost in 1993. In such kind of situation, the small-sized and inefficient manager in Mie Pref. was obliged to withdraw from sea bream aquaculture. Kumamoto Pref. is located further from market sites and has an unsuitable nature environmental condition required for sea bream aquaculture. Although Kumamoto Pref. is trying to convert to the puffer fish aquaculture which requires different rearing techniques, aquaculture technique for puffer fish is not established yet.

  • PDF

Measurement of size and swimming speed of Bluefin tuna (Thunnus thynnus) using by a stereo vision method (스테레오 카메라 기법을 이용한 참다랑어의 크기 및 유영속도 측정)

  • Yang, Yong-Su;Lee, Kyoung-Hoon;Ji, Seong-Chul;Jeong, Seong-Jae;Kim, Kyong-Min;Park, Seong-Wook
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.3
    • /
    • pp.214-221
    • /
    • 2011
  • This study was performed to develop a video based system which can be used to measure the averaged fish size in a non-intrusive fashion. The design was based on principles of simple stereo geometry, incorporated fish dimensions weight relationships and took into consideration fish movement to lower system costs. As the fish size is an important factor that impacts the economy of an aquaculture enterprise. Size measurements, including fork length, width or height, girth, thickness and mass, can be used to determine fish condition in the fish farm, so the averaged fish size of fish cage needs to consistently monitor in open ocean aquaculture cage. A precision of ${\pm}3%$ for replicate length measurements of a 60cm bar is obtained at distances between 2.0 and 6.0m, and the mean fork length and mean swimming speed of bluefin tuna were estimated to 48.8cm and 0.78FL/s, respectively.

Wave Forces Acting on a Cylindrical Aquaculture Fish Cage (원통형 양식시설물에 작용하는 파랑하중)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.1
    • /
    • pp.63-69
    • /
    • 2011
  • In this paper, the wave forces on a cylindrical aquaculture fish cage, which consists of the porous mesh with the uniform porosity, are analyzed using matched eigenfunction expansion method. The boundary condition on the porous net is derived based on the Darcy's law, which implies that the velocity of the fluid passing through the net is linearly proportional to the pressure difference between two sides of the net. The wave forces and wave responses are investigated by changing the porous parameter of porous net as well as the submerged position (floating type, bottom-mounted type) of an aquaculture fish cage. It is found that the wave forces on a bottom-mounted type are largely decreased compared with that on a floating type. Also, the porosity of the netting structure plays an important role in reducing the wave forces and the wave elevation in the vicinity of an aquaculture fish cage.

Evaluation of Extruded Pellets Containing Different Protein and Lipid Levels, and Raw Fish-Based Moist Pellet for Growth of Flounder (Paralichthys olivaceus) (단백질 및 지질함량이 다른 부상배합사료와 생사료의 넙치 사육효과 비교)

  • Kim, Kyoung-Duck;Kang, Yong-Jin;MoonLee, Hae-Young;Kim, Kang-Woong;Jang, Mi-Soon;Kim, Shin-Kwon;Son, Maeng-Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.5
    • /
    • pp.476-480
    • /
    • 2009
  • This study was conducted to evaluate the effect of extruded pellets (EP) containing different levels of protein (51%-55%) and lipid (9%-15%) for growth of flounder (Paralichthys olivaceus) comparing with raw fish-based moist pellet (MP). Two replicate groups of 40 fish per each tank (initial mean weight 106 g) were fed one of three experimental EP (EP1, EP2 and EP3) containing different protein and lipid levels, a commercial EP (EP4) and MP for 16 weeks. Survival was not significantly different among all groups. Final mean weight of fish fed MP was significantly lower than that of fish fed EP1, EP2 and EP4 (P<0.05), but not significantly different from fish fed EP3. Feed efficiency of MP-fed fish was significantly lower than fish fed all EP formulations (P<0.05), but no significant difference was observed among the EP groups. Daily feed intake of MP-fed fish was significantly higher than fish fed all EP formulations (P<0.05). Condition factor was not significantly different among all groups. Whole body moisture and crude lipid contents were significantly affected by diet (P<0.05). Growth and feed efficiency of flounder was not affected by EP protein and lipid levels. Dietary formulation used in EP1, EP2 and EP3 can be applied to the practical feeding of flounder.

Optimum environmental condition of live container for long distance transport in live abalone Haliotis discus hannai (북방전복, Haliotis discus hannai의 장거리 수송을 위한 적정 수온 및 염분 조건)

  • Yang, Sung-Jin;Myeong, Jeong-In;Park, Jung-Jun;Shin, Yun-Kyung
    • The Korean Journal of Malacology
    • /
    • v.30 no.4
    • /
    • pp.363-370
    • /
    • 2014
  • We investigated the survival rate by water temperature and salinity, physiological rhythm and morphological change of live abalone to get to know optimum water temperature and salinity suitable for long-distance transportation of live abalone. At $8^{\circ}C$ and above, 96-100% of survival rate was shown at all experiment groups. At $6^{\circ}C$, 66% of abalones survived in normal seawater but they showed 0% of survival rate at $30{\pm}0.5psu$ and $26{\pm}0.5psu$ of salinity at the same water temperature. There was no significant difference of oxygen consumption rate for a week between the seawater and $30{\pm}0.5psu$. Also, a positive correlation was shown between salinity and water temperature and the oxygen consumption rate was slightly higher at $30{\pm}0.5psu$ than seawater. Thinned epithelial layers and expansion of lymph sinus were observed less than $30{\pm}0.5psu$ or below $6^{\circ}C$ of temperature. This result shows that the optimum level of water temperature and salinity is considered to be $6-8^{\circ}C$ and more than $30{\pm}0.5psu$ respectively.

Biochemical Responses in Olive Flounder, Paralichthys olivaceus Fed Diet Supplemented with Fermented Aquaculture Sewage (양식장 배출물 발효물의 사료첨가에 따른 넙치, Paralichthys olivaceus의 생화학적 반응)

  • Jee, Jung-Hoon;Moon, Sang-Wook;Kim, Se-Jae;Lee, Young-Don;Keum, Yoo-Hwa;Kang, Ju-Chan
    • Journal of fish pathology
    • /
    • v.18 no.2
    • /
    • pp.187-195
    • /
    • 2005
  • Effluent of aquaculture industry has caused a growing concern regarding its environmental impact. We assessed the use of flounder farming sewage as supplement of diet, to minimize the impact of aquaculture on the environment or also establish the technique for the recycling of effluent sediment derived from land-based seawater fish farm. In order to investigate the effects of a fermented aquaculture waste on biochemical responses of olive flounder (Paralichthys olivaceus), fermented products of aquaculture wastes were used as test compounds that cause hepatic and renal stress through the induction of oxidative stress in liver and kidney. Hepatosomatic index (HSI), glutathione content and glutathione dependent enzyme were not significantly different and no correlation was found within the different types of fermentation condition or supplement concentration, except for significant increases in 50% fermentation group and 50% concentration group in case of glutathione peroxidase activity and HSI value, respectively. These results showed addition of fermented aquaculture sewage may be an economic artificial sources of diet for fish aquaculture practices without affecting the function and safety in view of biochemical examination.

Identifying Factors Influencing Fish Production of Shallow-sea Aquaculture Based on the Dynamic Panel Model (동적패널모형을 이용한 천해어류양식 생산에 영향을 미치는 요인 분석)

  • Sim, Seonghyun;Nam, Jongoh
    • Ocean and Polar Research
    • /
    • v.41 no.1
    • /
    • pp.35-46
    • /
    • 2019
  • The purpose of this study is to identify factors influencing fish production of shallow-sea aquaculture in South Korea. This study employed the two-way fixed effect and random effect models based on the panel models and also the difference between GMM and system GMM models based on the dynamic panel models using the amount of fish farming production, the number of stocked fry, the number of cultured fish, the amount of inputted feed, the farming area, the number of workers, and the sales price data from 2010 to 2017. First, the two-way fixed effect model of the panel models was selected by panel characteristics, time characteristics and Hausman tests and also the model was statistically significant. As a result of the two-way fixed effect model, the number of stocked fry, the amount of inputted feed, and the number of workers were identified as factors that increase the fish production of shallow-sea aquaculture. However, the number of cultured fish and the sales price were analyzed as factors that reduce the fish production of shallow-sea aquaculture. Second, the system GMM model of the dynamic panel models was selected by Hansen test and Arellano-Bond test in order to identify whether or not the over-discrimination condition is appropriate. Based on the system GMM model, the number of stocked fry, the amount of inputted feed, the number of workers in this year and 1 year ago, the number of cultured fish 2 years ago, and the sale price 3 years ago were analyzed as factors that increase the fish production of shallow-sea aquaculture. However, the amount of fish farming production 1, 2, 3 years ago, the farming area in this year, and the number of cultured fish in this year and 1 year ago were identified as factors that reduce the fish production of shallow-sea aquaculture. In conclusion, this study suggests that it is desirable to control the amount of stocked fry rather than to expand the farming area for fish farming in shallow-sea aquaculture, so as to keep the sale price at a certain level by maintaining the appropriate amount of fish production.