• Title/Summary/Keyword: Approximation Order

Search Result 1,077, Processing Time 0.037 seconds

Molecular Diffusion of Water in Paper (IV) - Mathematical model and fiber-phase moisture diffusivities for unsteady-state moisture diffusion through paper substrates - (종이내 수분확산 (제4보) - 종이의 비정상상태 수분확산 모델과 섬유상 수분확산 계수 -)

  • 윤성훈;박종문;이병철
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.3
    • /
    • pp.17-24
    • /
    • 2002
  • An unsteady-state moisture diffusion through cellulosic fibers in paper was characterized from the moisture sorption experiment and the mathematical modeling. The sorption experiment was conducted by exposing thin dry paper specimens to a constant temperature-humidity environment. Oven dried blotting papers and filter papers were used as test samples and the gains of their weights were constantly monitored and recorded as a function of sorption time. For a mathematical approach, the moisture transport was assumed to be an one-dimensional diffusion in thickness direction through the geometrically symmetric structure of paper. The model was asymptotically simplified with a short-term approximation. It gave us a new insight into the moisture uptake phenomena as a function of square root of sorption time. The fiber-phase moisture diffusivities(FPMD) of paper samples were then determined by correlating the experimental data with the unsteady-state diffusion model obtained. Their values were found to be on the order of magnitude of $10^{-6}-10^{-7}cm^2$/min., which were equivalent to the hypothetical effective diffusion coefficients at the limit of zero porosity. The moisture sorption curve predicted from the model fairly agreed with that obtained from the experiment at some limited initial stages of the moisture uptake process. The FPMD value of paper significantly varied depending upon the current moisture content of paper. The mean FPMD was about 0.7-0.8 times as large as the short-term approximated FPMD.

The Effect of Lateral Approximations on the Survival of the Free Composite Flap (이식편의 측면접합이 복합조직이식의 생존에 미치는 영향)

  • Kim, Deok-Woo;Park, Seung-Ha;Lee, Byung-Ihl
    • Archives of Reconstructive Microsurgery
    • /
    • v.16 no.2
    • /
    • pp.57-62
    • /
    • 2007
  • Non-vascularized free composite graft is one of the simple and effective reconstructive options, but its clinical use has been limited due to questionable survival rate. Early vascularization is essential for graft survival and is mainly carried out via recipient bed or repaired sites. This study was designed to investigate the effect of the lateral marginal approximations on the survival of the free composite flap using a model of skin-subcutaneous composite graft in rats. Thirty 1.5 ${\times}$ 1.5 $cm^2$ sized square shape composite flaps were elevated freely and reposed in place immediately on the dorsum of five Sprague-Dawley rats, and divided into five groups of six flaps. In all groups, graft bed was isolated with silastic sheet. In the group I, all sides of flap were repaired with blockage of silastic sheet insertion. Three, two, and one sides of flap were treated with same method in the group II, III, and IV respectively. Other sides of flaps were repaired without blockage, so all sides of flap were repaired in the group V. At 14 days later, the survived rate of each flap was evaluated according to the numbers of the repair sites. Histological examination was done for the evaluation of new vessel development quantitatively. Overall survived rates were increased with the number of repaired sites, but the group V only showed increased survival rate up to more than fifty percentile of the flap size with a significant difference statistically. New vessels were also increased in proportion with the number of repaired sites, and the repair site more than two had significant effect on the increased number of new vessels. In conclusion, at least more than three-fourth of flap circumference should be repaired in order to increase flap survival effectively under the condition of bed isolation.

  • PDF

The Effect of Internal Flow on Vortex-Induced Vibration of Marine Riser (Riser의 내부유체 흐름이 소용돌이로 인한 Riser 동적반응에 미치는 영향)

  • Hong, Nam-Seeg;Hsiang Wang
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.2
    • /
    • pp.198-208
    • /
    • 1995
  • Combining Iwan-Blevin's model into the approximated form of the nonlinear model derived for the dynamic analysis of the riser system with the inclusion of internal flow, current-vortex model is developed to investigate the effect of internal flow on vortex-induced vibration due to inline current The riser system includes a steadly flow inside the pipe which is modeled as an extensible or inextensible tubular beam. Galerkin's finite element approximation are implemented to derive the matrix equation of equilibrium for the finite element system. The investigations of the effect of internal flow on vibration due to inline current are performed according to the change of various parameters such as top tension, infernal flow velocity. current velocity, and so on. It is found that the effect of internal flow on vibration due to vortex shedding can be controlled by the increase of top tension. However, careful consideration has to be given, in design point in order to avoid the resonance band occurding near vortex shedding frequency, particularly for the long riser.

  • PDF

The Convergence of Accuracy Ratio in Finite Element Method (유한요소법의 정도수렴)

  • Cho, Soon-Bo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.2 s.8
    • /
    • pp.85-90
    • /
    • 2003
  • If we use a third order approximation for the displacement function of beam element in finite element methods, finite element solutions of beams yield nodal displacement values matching to beam theory results to have no connection with the number increasing of elements of beams. It is assumed that, as the member displacement value at beam nodes are correct, the calculation procedure of beam element stiffness matrix have no numerical errors. A the member forces are calculated by the equations of $\frac{-M}{EI}=\frac{{d^2}{\omega}}{dx^2}\;and\;\frac{dM}{dx}=V$, the member forces at nodes of beams have errors in a moment and a shear magnitudes in the case of smaller number of element. The nodal displacement value of plate subject to the lateral load converge to the exact values according to the increase of the number of the element. So it is assumed that the procedures of plate element stiffness matrix calculations has a error in the fundamental assumptions. The beam methods for the high accuracy ratio solution Is also applied to the plate analysis. The method of reducing a error ratio of member forces and element stiffness matrix in the finite element methods is studied. Results of study were as follows. 1. The matrixes of EI[B] and [K] in the equations of M(x)=EI[B]{q} and M(x) = [K]{q}+{Q} of beams are same. 2. The equations of $\frac{-M}{EI}=\frac{{d^2}{\omega}}{dx^2}\;and\;\frac{dM}{dx}=V$ for the member forces have a error ratio in a finite element method of uniformly loaded structures, so equilibrium node loads {Q} must be substituted in the equation of member forces as the numerical examples of this paper revealed.

  • PDF

Low-Complexity Soft-MIMO Detection Algorithm Based on Ordered Parallel Tree-Search Using Efficient Node Insertion (효율적인 노드 삽입을 이용한 순서화된 병렬 트리-탐색 기반 저복잡도 연판정 다중 안테나 검출 알고리즘)

  • Kim, Kilhwan;Park, Jangyong;Kim, Jaeseok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.10
    • /
    • pp.841-849
    • /
    • 2012
  • This paper proposes an low-complexity soft-output multiple-input multiple-output (soft-MIMO) detection algorithm for achieving soft-output maximum-likelihood (soft-ML) performance under max-log approximation. The proposed algorithm is based on a parallel tree-search (PTS) applying a channel ordering by a sorted-QR decomposition (SQRD) with altered sort order. The empty-set problem that can occur in calculation of log-likelihood ratio (LLR) for each bit is solved by inserting additional nodes at each search level. Since only the closest node is inserted among nodes with opposite bit value to a selected node, the proposed node insertion scheme is very efficient in the perspective of computational complexity. The computational complexity of the proposed algorithm is approximately 37-74% of that of existing algorithms, and from simulation results for a $4{\times}4$ system, the proposed algorithm shows a performance degradation of less than 0.1dB.

Cone-beam computed tomography-based diagnosis and treatment simulation for a patient with a protrusive profile and a gummy smile

  • Uesugi, Shunsuke;Imamura, Toshihiro;Kokai, Satoshi;Ono, Takashi
    • The korean journal of orthodontics
    • /
    • v.48 no.3
    • /
    • pp.189-199
    • /
    • 2018
  • For patients with bimaxillary protrusion, significant retraction and intrusion of the anterior teeth are sometimes essential to improve the facial profile. However, severe root resorption of the maxillary incisors occasionally occurs after treatment because of various factors. For instance, it has been reported that approximation or invasion of the incisive canal by the anterior tooth roots during retraction may cause apical root damage. Thus, determination of the position of the maxillary incisors is key for orthodontic diagnosis and treatment planning in such cases. Cone-beam computed tomography (CBCT) may be useful for simulating the post-treatment position of the maxillary incisors and surrounding structures in order to ensure safe teeth movement. Here, we present a case of Class II malocclusion with bimaxillary protrusion, wherein apical root damage due to treatment was minimized by pretreatment evaluation of the anatomical structures and simulation of the maxillary central incisor movement using CBCT. Considerable retraction and intrusion of the maxillary incisors, which resulted in a significant improvement in the facial profile and smile, were achieved without severe root resorption. Our findings suggest that CBCT-based diagnosis and treatment simulation may facilitate safe and dynamic orthodontic tooth movement, particularly in patients requiring maximum anterior tooth retraction.

A Complexity Reduced PNFS Algorithm for the OFDM System with Frequency Offset and Phase Noise (주파수 오프셋과 위상 잡음이 있는 OFDM 시스템에서 PNFS 알고리즘 간소화를 통한 복잡도 개선)

  • Kim, Do-Hoon;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.4
    • /
    • pp.499-506
    • /
    • 2012
  • In this paper, we analyze the effects of phase noise and frequency offset that cause performance degradation. Basically, we like to propose reduced PNFS(Phase Noise and Frequency offset Suppression) algorithm. The OFDM system is seriously affected by ICI component such as phase noise, frequency offset and Doppler effects. Especially, complicated processing algorithm with high complexity was required it in order to compensate those ICI components. So, we propose PNFS algorithm that can decrease complexity and compensate ICI components. We propose a method decreased complexity by approximation of parameters that affect slightly performance change and compare the quantity of conventional and revised PNFS algorithm. Also, simulation shows that BER performance of revised PNFS algorithm can be improved slightly.

Earthquake-induced pounding between the main buildings of the "Quinto Orazio Flacco" school

  • Fiore, Alessandra;Monaco, Pietro
    • Earthquakes and Structures
    • /
    • v.1 no.4
    • /
    • pp.371-390
    • /
    • 2010
  • Historical buildings in seismically active regions are severely damaged by earthquakes, since they certainly were not designed by the original builders to withstand seismic effects. In particular the reports after major ground motions indicate that earthquake-induced pounding between buildings may lead to substantial damage or even collapse of colliding structures. The research on structural pounding during earthquakes has been recently much advanced, although most of the studies are conducted on simplified single degree of freedom systems. In this paper a detailed pounding-involved response analysis of three adjacent structures is performed, concerning the main bodies of the "Quinto Orazio Flacco" school. The construction includes a main masonry building, with an M-shaped plan, and a reinforced concrete building, separated from the masonry one and realized along its free perimeter. By the analysis of the capacity curves obtained by suitable pushover procedures performed separately for each building, it emerges that masonry and reinforced concrete buildings are vulnerable to earthquake-induced structural pounding in the longitudinal direction. In particular, due to the geometric configuration of the school, a special case of impact between the reinforced concrete structure and two parts of the masonry building occurs. In order to evaluate the pounding-involved response of three adjacent structures, in this paper a numerical procedure is proposed, programmed using MATLAB software. Both a non-linear viscoelastic model to simulate impact and an elastic-perfectly plastic approximation of the storey shear force-drift relation are assumed, differently from many commercial softwares which admit just one non-linearity.

Analysis of Stress Concentration Problems Using Moving Least Squares Finite Difference Method(I) : Formulation for Solid Mechanics Problem (이동최소제곱 유한차분법을 이용한 응력집중문제 해석(I) : 고체문제의 정식화)

  • Yoon, Young-Cheol;Kim, Hyo-Jin;Kim, Dong-Jo;Liu, Wing Kam;Belytschko, Ted;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.493-499
    • /
    • 2007
  • The Taylor expansion expresses a differentiable function and its coefficients provide good approximations for the given function and its derivatives. In this study, m-th order Taylor Polynomial is constructed and the coefficients are computed by the Moving Least Squares method. The coefficients are applied to the governing partial differential equation for solid problems including crack problems. The discrete system of difference equations are set up based on the concept of point collocation. The developed method effectively overcomes the shortcomings of the finite difference method which is dependent of the grid structure and has no approximation function, and the Galerkin-based meshfree method which involves time-consuming integration of weak form and differentiation of the shape function and cumbersome treatment of essential boundary.

Development of Optimal Design Simulation Model for Least Cost Urban Sewer System Considering Risk (I) (위험도를 고려한 최소비용 도시우수관망 설계의 최적화 모형개발 (I): 모형의 개발과 시험유역의 적용)

  • Jang, Suk-Hwan;Park, Sang-Woo
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.12 s.161
    • /
    • pp.1021-1028
    • /
    • 2005
  • This study purpose to develop simulation model of optimal design condition of urban storm sewer system considering risk. Urban Storm Sewer Optimal Design Model(USSOD) can compute pipe capacity, pipe slope, crown elevation, excavation depth, risk and return cost in the condition of design discharge. Rational formula is adopted for design discharge and Manning's formula is used for pipe capacity. Discrete differential dynamic programming(DDDP) technique which is a kind of dynamic programming(DP) is used for optimization and first order second moment approximation method and uncertainty analysis is also for developing model. USSOD is applied to hypothetical drainage basin to test and verify, which resulted economical and efficient design in urban drainage sewer system.