• Title/Summary/Keyword: Approximate maximum likelihood estimators

Search Result 79, Processing Time 0.023 seconds

Estimation for the Half-Triangle Distribution Based on Progressively Type-II Censored Samples

  • Han, Jun-Tae;Kang, Suk-Bok
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.3
    • /
    • pp.951-957
    • /
    • 2008
  • We derive some approximate maximum likelihood estimators(AMLEs) and maximum likelihood estimator(MLE) of the scale parameter in the half-triangle distribution based on progressively Type-II censored samples. We compare the proposed estimators in the sense of the mean squared error for various censored samples. We also obtain the approximate maximum likelihood estimators of the reliability function using the proposed estimators. We compare the proposed estimators in the sense of the mean squared error.

  • PDF

Approximate Maximum Likelihood Estimation for the Three-Parameter Weibull Distribution

  • Kang, S.B.;Cho, Y.S.;Choi, S.H.
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.1
    • /
    • pp.209-217
    • /
    • 2001
  • We obtain the approximate maximum likelihood estimators (AMLEs) for the scale and location parameters $\theta$ and $\mu$ in the three-parameter Weibull distribution based on Type-II censored samples. We also compare the AMLEs with the modified maximum likelihood estimators (MMLEs) in the sense of the mean squared error (MSE) based on complete sample.

  • PDF

On the maximum likelihood estimation for a normal distribution under random censoring

  • Kim, Namhyun
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.6
    • /
    • pp.647-658
    • /
    • 2018
  • In this paper, we study statistical inferences on the maximum likelihood estimation of a normal distribution when data are randomly censored. Likelihood equations are derived assuming that the censoring distribution does not involve any parameters of interest. The maximum likelihood estimators (MLEs) of the censored normal distribution do not have an explicit form, and it should be solved in an iterative way. We consider a simple method to derive an explicit form of the approximate MLEs with no iterations by expanding the nonlinear parts of the likelihood equations in Taylor series around some suitable points. The points are closely related to Kaplan-Meier estimators. By using the same method, the observed Fisher information is also approximated to obtain asymptotic variances of the estimators. An illustrative example is presented, and a simulation study is conducted to compare the performances of the estimators. In addition to their explicit form, the approximate MLEs are as efficient as the MLEs in terms of variances.

Estimation for the Half Logistic Distribution under Progressive Type-II Censoring

  • Kang, Suk-Bok;Cho, Young-Seuk;Han, Jun-Tae
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.6
    • /
    • pp.815-823
    • /
    • 2008
  • In this paper, we derive the approximate maximum likelihood estimators(AMLEs) and maximum likelihood estimator of the scale parameter in a half-logistic distribution based on progressive Type-II censored samples. We compare the proposed estimators in the sense of the mean squared error for various censored samples. We also obtain the approximate maximum likelihood estimators of the reliability function using the proposed estimators. We compare the proposed estimators in the sense of the mean squared error.

On the maximum likelihood estimators for parameters of a Weibull distribution under random censoring

  • Kim, Namhyun
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.3
    • /
    • pp.241-250
    • /
    • 2016
  • In this paper, we consider statistical inferences on the estimation of the parameters of a Weibull distribution when data are randomly censored. Maximum likelihood estimators (MLEs) and approximate MLEs are derived to estimate the parameters. We consider two cases for the censoring model: the assumption that the censoring distribution does not involve any parameters of interest and a censoring distribution that follows a Weibull distribution. A simulation study is conducted to compare the performances of the estimators. The result shows that the MLEs and the approximate MLEs are similar in terms of biases and mean square errors; in addition, the assumption of the censoring model has a strong influence on the estimation of scale parameter.

Approximate MLEs for Exponential Distribution Under Multiple Type-II Censoring

  • Kang, Suk-Bok
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.983-988
    • /
    • 2003
  • When the available sample is multiply Type-II censored, the maximum likelihood estimators of the location and the scale parameters of two-parameter exponential distribution do not admit explicitly. In this case, we propose some approximate maximum likelihood estimators by approximating the likelihood equations appropriately. We present an example to illustrate these estimation methods.

  • PDF

AMLE for the Gamma Distribution under the Type-I censored sample

  • Kang, Suk-Bok;Lee, Hwa-Jung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.11 no.1
    • /
    • pp.57-64
    • /
    • 2000
  • By assuming a Type-I censored sample, we propose the approximate maximum likelihood estimators(AMLE) of the scale and location parameters of the gamma distribution. We compare the proposed estimators with the maximum likelihood estimators(MLE) in the sense of the mean squared errors(MSE) through Monte Carlo method.

  • PDF

Estimation for the Generalized Extreme Value Distribution Based on Multiply Type-II Censored Samples

  • Han, Jun-Tae;Kang, Suk-Bok
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.3
    • /
    • pp.817-826
    • /
    • 2007
  • In this paper, we derive the approximate maximum likelihood estimators of the scale parameter and the location parameter in a generalized extreme value distribution under multiply Type-II censoring by the approximate maximum likelihood estimation method. We compare the proposed estimators in the sense of the mean squared error for various censored samples.

  • PDF

AMLEs for the Exponential Distribution Based on Multiply Type-II Censored Samples

  • Kang Suk-Bok;Lee Sang-Ki
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.3
    • /
    • pp.603-613
    • /
    • 2005
  • We propose some estimators of the location parameter and derive the approximate maximum likelihood estimators (AMLEs) of the scale parameter in the exponential distribution based on multiply Type-II censored samples. We calculate the moments for the proposed estimators of the location parameter, and the AMLEs which are the linear functions of the order statistics. We compare the proposed estimators in the sense of the mean squared error (MSE) for various censored samples.

Reliability Estimation for the Exponential Distribution under Multiply Type-II Censoring

  • Kang, Suk-Bok;Lee, Sang-Ki;Choi, Hui-Taeg
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.13-26
    • /
    • 2005
  • In this paper, we derive the approximate maximum likelihood estimators of the scale parameter and location parameter of the exponential distribution based on multiply Type-II censored samples. We compare the proposed estimators in the sense of the mean squared error for various censored samples. We also obtain the approximate maximum likelihood estimator (AMLE) of the reliability function by using the proposed estimators. And then we compare the proposed estimators in the sense of the mean squared error.

  • PDF