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Abstract
In this paper, we study statistical inferences on the maximum likelihood estimation of a normal distribution

when data are randomly censored. Likelihood equations are derived assuming that the censoring distribution
does not involve any parameters of interest. The maximum likelihood estimators (MLEs) of the censored normal
distribution do not have an explicit form, and it should be solved in an iterative way. We consider a simple method
to derive an explicit form of the approximate MLEs with no iterations by expanding the nonlinear parts of the
likelihood equations in Taylor series around some suitable points. The points are closely related to Kaplan-Meier
estimators. By using the same method, the observed Fisher information is also approximated to obtain asymptotic
variances of the estimators. An illustrative example is presented, and a simulation study is conducted to compare
the performances of the estimators. In addition to their explicit form, the approximate MLEs are as efficient as
the MLEs in terms of variances.

Keywords: Kaplan-Meier estimators, Koziol-Green model, maximum likelihood estimators, normal
distribution, random censoring

1. Introduction

In statistical analysis of life time data, some well-known common distributions are exponential,
Weibull, lognormal, and gamma distribution. The lognormal distribution is especially useful when
a hazard rate is initially increasing and then decreasing. We also need inferences for a normal distri-
bution since the logarithm of a lognormal variable follows a normal. As for censoring types, the most
common and simplest censoring schemes are type I or type II censoring. For numerous censoring
types, see Tableman and Kim (2004), and Lee and Wang (2003).

Gupta (1952), Cohen (1959, 1961), and Kim (2014b) studied the estimation of a type II censored
normal distribution. Balakrishinan et al. (2003) dealt with the estimation of a normal distribution on
a progressively type II censoring scheme, which is a generalization of traditional type II censoring.
Maximum likelihood estimators (MLEs) based on type II or progressive type II censored data from a
normal distribution do not have explicit forms, and the situation remains as it is for many distributions
when data are censored. Kim (2014b) and Balakrishinan et al. (2003) derived approximate MLEs
under type II censoring and progressively type II censoring of a normal, respectively.

Random censoring occurs frequently in survival studies. In this paper, we consider the parameter
estimation of a normal distribution for randomly censored data by applying the same approximate
method used in Kim (2014b) and Balakrishinan et al. (2003). As it is mentioned, they dealt with type

1 Department of Science, Hongik University, 94 Wausan-Ro, Mapo-Gu, Seoul 04066, Korea. E-mail: nhkim@hongik.ac.kr

Published 30 November 2018 / journal homepage: http://csam.or.kr
c⃝ 2018 The Korean Statistical Society, and Korean International Statistical Society. All rights reserved.



648 Namhyun Kim

II or progressively type II censoring, not random censoring. The Kaplan and Meier (1958) estimator
is used for the plotting position of randomly censored data.

The approximation method was first developed by Balakrishnan (1989) to find the approximate
MLE of the scalar parameter in the Rayleigh distribution with left and right type II censoring. The
method approximates the nonlinear part of the likelihood equations; subsequently, many researchers
used it for other distributions under several censoring schemes that are most often progressively type
II censoring. Balakrishinan et al. (2003) did it for a normal distribution. Balakrishnan and Kan-
nan (2001), and Balakrishnan et al. (2004) studied the estimation for the logistic distribution and
the extreme value distribution, respectively. Asgharzadeh (2006, 2009) dealt with the problem for
generalized logistic distribution and generalized exponential distribution, respectively. Balakrishnan
and Asgharzadeh (2005), and Kang et al. (2008) used the method for the half logistic distribution.
Seo and Kang (2007), and Kim and Han (2009) discussed the procedure for the Rayleigh distribu-
tion. Sultan et al. (2014) used it for inverse Weibull distribution. As for random censoring, Kim
(2014a, 2016) applied the approximate method to generalized exponential distributions and Weibull
distribution, respectively.

In Section 2, we derive MLEs and approximate MLEs for a normal under random censoring. In
Section 3, we provide expressions for observed Fisher information to obtain the approximate variances
of the estimators. Section 4 presents simulation results that compare MLEs and approximate MLEs.
Section 5 ends the paper with some concluding remarks.

2. MLEs and the approximate MLEs

Let T1, . . . ,Tn be lifetimes with distribution function F and probability density function (pdf) f , and
C1, . . . ,Cn be random censoring times drawn independently of the T1, . . . ,Tn from distribution func-
tion G and pdf g. The Ti’s are censored on the right by Ci. On each of n individuals, we observe n
random pairs (Xi, δi), i = 1, . . . , n, where

Xi = min(Ti,Ci) and δi =

{
1, if Ti ≤ Ci,
0, if Ti > Ci.

The observed random pairs (Xi, δi) could be written as (X(i), δ(i)) where X(1) ≤ · · · ≤ X(n) are the ordered
observations of X1, . . . , Xn, and δ(i) is the δ corresponding to X(i). Then the likelihood function based
on the ordered (X(i), δ(i)) becomes

L = n!
n∏

j=1

(
f
(
x( j)

)
Ḡ

(
x( j)

))δ( j)
(
g
(
x( j)

)
F̄

(
x( j)

))1−δ( j)

= n!
n∏

j=1

(
f
(
x( j)

))δ( j)
(
F̄

(
x( j)

))1−δ( j)
n∏

j=1

(
g
(
x( j)

))1−δ( j)
(
Ḡ

(
x( j)

))δ( j)
(2.1)

with F̄ = 1 − F, Ḡ = 1 −G. If we assume the distribution of Ci’s does not involve any parameters of
interest, the last factor in (2.1) plays no role in the maximization. Hence we have

L ∝
n∏

j=1

(
f
(
x( j)

))δ( j)
(
F̄

(
x( j)

))1−δ( j)
.

Usually lifetimes are positive. When we assume the lifetimes follow a lognormal distribution, the
logarithm of the lifetimes should follow a normal distribution. In this case we need the inference for
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a normal. Let Ti’s follow the normal distribution N(µ, σ2) with the density

f (x) =
1
√

2πσ
exp

(
− (x − µ)2

2σ2

)
, −∞ < x < ∞.

Here, the lifetime itself should be eTi . Then the log-likelihood function l = ln L gives

l ∝
n∑

j=1

δ( j)

(
− logσ − 1

2
ξ2

j

)
+

n∑
j=1

(
1 − δ( j)

)
log Φ̄(ξ j),

where ξ j ≡ ξ j(µ, σ) = (x( j) − µ)/σ, ϕ(t) = (1/
√

2π)e−(1/2)t2
, Φ(ξ j) =

∫ ξ j

−∞ ϕ(t)dt, and Φ̄(ξ j) = 1−Φ(ξ j).
Using ∂ξ j/∂µ = −1/σ, ∂ξ j/∂σ = −ξ j/σ,

∂

∂µ
log Φ̄(ξ j) =

1
σ

Q(ξ j),

∂

∂σ
log Φ̄(ξ j) =

ξ j

σ
Q(ξ j),

with Q(ξ j) = ϕ(ξ j)/Φ̄(ξ j), we have the likelihood equations

∂l
∂µ
=

1
σ

n∑
j=1

δ( j)ξ j +
1
σ

n∑
j=1

(
1 − δ( j)

)
Q(ξ j) = 0, (2.2)

∂l
∂σ
= −nu

σ
+

1
σ

n∑
j=1

δ( j)ξ
2
j +

1
σ

n∑
j=1

(
1 − δ( j)

)
ξ jQ(ξ j) = 0, (2.3)

where nu =
∑n

j=1 δ( j) is the number of uncensored data. We let µ̂, σ̂ be the solutions of the above
equations.

The likelihood equations (2.2) and (2.3) do not have an explicit solution except for all δ( j) = 1,
a complete sample. Therefore we consider approximate MLEs that give an explicit form and do not
need any iterations for computations. As mentioned in Section 1, the approximation method was first
developed by Balakrishnan (1989); subsequently, researchers have used it for other distributions under
several censoring schemes.

The process can be done by approximating Q(ξi) � ai + biξi. The idea is to expand Q(ξi) in the
Taylor series by keeping the first two terms around a suitable point ξi0. We will define ai, bi later in
this section. By replacing Q(ξi) � ai + biξi in (2.2), and (2.3), we have the approximate likelihood
equations

∂l
∂µ
�

1
σ

n∑
j=1

δ( j)ξ j +
1
σ

n∑
j=1

(
1 − δ( j)

) (
a j + b jξ j

)
= 0, (2.4)

∂l
∂σ
� −nu

σ
+

1
σ

n∑
j=1

δ( j)ξ
2
j +

1
σ

n∑
j=1

(
1 − δ( j)

)
ξ j

(
a j + b jξ j

)
= 0. (2.5)
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Substituting ξ j = (x( j) − µ)/σ and multiplying σ2 or σ3, we have

n∑
j=1

δ( j)

(
x( j) − µ

)
+

n∑
j=1

(
1 − δ( j)

) (
a jσ + b j

(
x( j) − µ

))
= 0, (2.6)

−nuσ
2 + σ

n∑
j=1

(
1 − δ( j)

)
a j

(
x( j) − µ

)
+

n∑
j=1

δ( j)

(
x( j) − µ

)2
+

n∑
j=1

(
1 − δ( j)

)
b j

(
x( j) − µ

)2
= 0. (2.7)

From (2.6), we have the solution µ̃,

µ̃ = D + Eσ (2.8)

with

D =

∑n
j=1 δ( j)x( j) +

∑n
j=1

(
1 − δ( j)

)
b jx( j)

nu +
∑n

j=1

(
1 − δ( j)

)
b j

, E =

∑n
j=1

(
1 − δ( j)

)
a j

nu +
∑n

j=1

(
1 − δ( j)

)
b j

. (2.9)

Substituting µ = D + Eσ into (2.7), we have

Aσ2 − Bσ −C = 0 (2.10)

with

A = nu − nuE2 +

n∑
j=1

(
1 − δ( j)

) (
a jE − b jE2

)
,

B = −2E
n∑

j=1

δ( j)

(
x( j) − D

)
− 2E

n∑
j=1

(
1 − δ( j)

)
b j

(
x( j) − D

)
+

n∑
j=1

(
1 − δ( j)

)
a j

(
x( j) − D

)
,

C =
n∑

j=1

δ( j)

(
x( j) − D

)2
+

n∑
j=1

(
1 − δ( j)

)
b j

(
x( j) − D

)2
. (2.11)

Using (2.9), we can easily see that A = nu, and the first two terms in B vanish. Hence the quadratic
equation (2.10) in σ becomes

nuσ
2 − Bσ −C = 0 (2.12)

with

B =
n∑

j=1

(
1 − δ( j)

)
a j

(
x( j) − D

)
and C in (2.11). The solution σ̃ of the quadratic equation (2.12) is

σ̃ =
B +

√
B2 + 4nuC
2nu

. (2.13)

Since we can show bi ≥ 0, it follows C ≥ 0 (see Remark 1 below). Therefore the other root of the
equation (2.12) can not be a solution of σ. Note that the approximate MLEs in (2.8) and (2.13) lead
to the MLEs µ̂ = x̄, σ̂2 =

∑n
j=1(x j − x̄)2/n of the normal distribution for a complete sample.
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Now let us think about the explicit form of ai and bi in Q(ξi) � ai + biξi. Let

ξi0 = Φ
−1(pi), (2.14)

where Φ−1 is the inverse of Φ, and pi is a plotting position or a quantile probability. By expanding
Q(ξi) around ξi0 in the Taylor series keeping only the first two terms, Q(ξi) can be approximated by

Q(ξi) � Q(ξi0) + Q′(ξi0)(ξi − ξi0) ≡ ai + biξi

with

ai = Q(ξi0) − Q′(ξi0)ξi0, (2.15)
bi = Q′(ξi0) = Q(ξi0)(Q(ξi0) − ξi0). (2.16)

Remark 1. The second equality in (2.16) follows easily using

ϕ′(ξi0) = −ξi0ϕ(ξi0) and Φ̄′(ξi0) = −ϕ(ξi0).

From

bi

(
Φ̄(ξi0)

)2
= ϕ(ξi0)

(
ϕ(ξi0) − ξi0Φ̄(ξi0)

)
,

ϕ(ξi0) − ξi0Φ̄(ξi0) ≥ ϕ(ξi0) −
∫ ∞

ξi0

zϕ(z)dz ≥ ϕ(ξi0) +
∫ ∞

ξi0

ϕ′(z)dz ≥ 0,

bi in (2.16) should be nonnegative, and C in (2.11) is also nonnegative. See also Kim (2014b), and
Balakrishnan et al. (2003).

Remark 2. Let Zi, i = 1, . . . , n, be a sample from a normal distribution with µ = 0, σ = 1, and let
µ̂z, σ̂z be their MLEs. Then we can easily show

µ̂ = σµ̂z + µ, σ̂ = σσ̂z

from the likelihood equations (2.2), (2.3). The same relations hold for the approximate MLEs by the
equations (2.8), (2.13). Hence we can assume the true value of µ = 0 and σ = 1 without loss of
generality when we simulate the performance of the estimators.

For randomly censored data, the Kaplan-Meier estimator pKM
i is usually used for the plotting

position pi in (2.14),

pKM
i = 1 −

∏
j≤i

(
n − j

n − j + 1

)δ( j)

.

The estimator has been studied in Kaplan and Meier (1958), Efron (1967), Breslow and Crowley
(1974), and Meier (1975). Michael and Schucany (1986) suggested the modified Kaplan-Meier esti-
mator pMS

i,c ,

pMS
i,c = 1 − n − c + 1

n − 2c + 1

∏
j≤i

(
n − j − c + 1
n − j − c + 2

)δ( j)

, 0 ≤ c ≤ 1, i = 1, . . . , n, (2.17)
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that reduces to pi,c = (i − c)/(n − 2c + 1) for a complete sample. However pMS
i,c in (2.17) could have a

negative value if the smallest data value is censored. Therefore we modify pMS
i,c again as

pi,c = 1 −
∏
j≤i

(
n − j − c + 1
n − j − c + 2

)δ( j)
(

n − c + 1
n − 2c + 1

)δ(1) ( n − c
n − 2c + 1

)1−δ(1)

, 0 ≤ c ≤ 1, i = 1, . . . , n. (2.18)

The last term in pi,c is to avoid 0 value. Note that we assumed the data x(1), . . . , x(n) are ordered
observations and δ(1) corresponds to the indicator of the minimum. The particular choice of c is of
little consequence, and popular values for c is c = 0 or c = 0.5. We often use the Blom (1958)’s
position c = 3/8 = 0.375 for a normal distribution, because it approximates the expected value of the
order statistics from the standard normal distribution.

Now we have defined ai, bi, ξi0, pi,c in (2.15), (2.16), (2.14), (2.18), respectively, and the approx-
imate MLEs µ̃, σ̃ of µ, σ in (2.8), (2.13) have been completely defined.

3. Asymptotic variances and covariance

In this section, the observed Fisher information is computed to give the asymptotic variances and
covariance of the MLEs µ̂, σ̂ or the approximate MLEs µ̃, σ̃. From the likelihood equation (2.2), and

∂ϕ(ξi)
∂µ

=
ξi

σ
ϕ(ξi),

∂Φ̄(ξi)
∂µ

=
1
σ
ϕ(ξi),

∂Q(ξi)
∂µ

=
1
σ

(
ξiQ(ξi) − (Q(ξi))2

)
≡ 1
σ

J(ξi),

we obtain

− ∂
2l

∂µ2 =
1
σ2 v11 with v11 = nu −

n∑
j=1

(1 − δ( j))J(ξ j), (3.1)

− ∂2l
∂σtialµ

=
1
σ2 v12 with v12 = 2

n∑
j=1

δ( j)ξ j +

n∑
j=1

(1 − δ( j))Q(ξ j) −
n∑

j=1

(1 − δ( j))ξ jJ(ξ j). (3.2)

From (2.3) and

∂ϕ(ξi)
∂σ

=
ξ2

i

σ
ϕ(ξi),

∂Φ̄(ξi)
∂σ

=
ξi

σ
ϕ(ξi),

∂Q(ξi)
∂σ

=
1
σ
ξiJ(ξi),

we get

− ∂
2l

∂σ2 =
1
σ2 v22 with v22 = −nu + 3

n∑
j=1

δ( j)ξ
2
j + 2

n∑
j=1

(1 − δ( j))ξ jQ(ξ j) −
n∑

j=1

(1 − δ( j))ξ2
j J(ξ j). (3.3)

From (3.1), (3.2), and (3.3), the observed Fisher information matrix becomes

I =
1
σ2

[
v11 v12
v12 v22

]
. (3.4)

By inverting (3.4), we obtain the asymptotic variance-covariance matrix of the estimates µ̂ and σ̂ as

I−1 = σ2
[

v11 v12
v12 v22

]−1

�
[

V̂ar(µ̂) Ĉov(µ̂, σ̂)
Ĉov(µ̂, σ̂) V̂ar(σ̂)

]
. (3.5)
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From the approximate likelihood equations (2.4) and (2.5), we get

− ∂
2l

∂µ2 �
1
σ2 ṽ11 with ṽ11 = nu +

n∑
j=1

(
1 − δ( j)

)
b j,

− ∂2l
∂σ∂µ

�
1
σ2 ṽ12 with ṽ12 = 2

n∑
j=1

δ( j)ξ j +

n∑
j=1

(
1 − δ( j)

) (
a j + b jξ j

)
+

n∑
j=1

(
1 − δ( j)

)
b jξ j,

− ∂
2l

∂σ2 �
1
σ2 ṽ22 with ṽ22 = −nu + 3

n∑
j=1

δ( j)ξ
2
j + 2

n∑
j=1

(
1 − δ( j)

)
ξ j

(
a j + b jξ j

)
+

n∑
j=1

(
1 − δ( j)

)
b jξ

2
j ,

and the approximate observed Fisher information matrix Ĩ,

Ĩ =
1
σ2

[
ṽ11 ṽ12
ṽ12 ṽ22

]
,

Ĩ−1 = σ2
[

ṽ11 ṽ12
ṽ12 ṽ22

]−1

�
[

Ṽar(µ̃) C̃ov(µ̃, σ̃)
C̃ov(µ̃, σ̃) Ṽar(σ̃)

]
. (3.6)

4. Simulation study and example

4.1. Simulation results

We compare the performance of the MLEs with the approximate MLEs through a simulation study.
To control the ratio of the censored data, we use two different random censoring models. One is the
Koziol and Green (1976) censorship model, that is

1 −G = (1 − F)β1 for some β1 > 0, (4.1)

where G is the distribution function of the censoring times C1, . . . ,Cn, and β1 is called a censoring
parameter. Csörgő and Horváth (1981), Chen et al. (1982), and Kim (2014a) discussed the motivation
and characterization of this model. According to Chen et al. (1982), the model could arise in a series
system with two components. In this system, it can only work if both components are functioning.
Let Ti be the life time of the first component with the distribution function F, and Ci be the second
with G. Then Xi = min(Ti,Ci) should be the lifetime of the system. If the second component is also
a series system of β1 independent and identically distributed subcomponents with F, then Ci should
be the minimum of β1’s life times, and the distribution function G of Ci should be (4.1). Under the
Koziol-Green model, the expected ratio of the censored data could be

P(Ti > Ci) =
∫ ∞

−∞
(1 − F(x))dG(x) =

∫ 1

0
β1(1 − x)β1 dx =

β1

β1 + 1
≡ γ,

and we call γ the censoring ratio of the model.
When the second component is parallel with β2 subcomponents, it works if at least one component

is functioning. In this case the censoring distribution G becomes

G = Fβ2 for some β2 > 0. (4.2)
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Table 1: Averages of the MLEs µ̂, σ̂, variances of µ̂, σ̂ and covariances under the Koziol-Green model

γ (β1) n µ̂ σ̂ Var(µ̂) Var(σ̂) Cov(µ̂, σ̂) V̂ar(µ̂) V̂ar(σ̂) Ĉov(µ̂, σ̂)
20 0.016 0.962 0.122 0.077 0.053 0.126 0.079 0.057

3
5

(
3
2

)
30 0.009 0.976 0.072 0.045 0.030 0.074 0.048 0.032
40 0.004 0.974 0.051 0.033 0.021 0.052 0.034 0.022
50 −0.001 0.982 0.039 0.026 0.016 0.041 0.027 0.017
20 0.003 0.957 0.082 0.052 0.026 0.084 0.055 0.029

1
2

(1)
30 0.010 0.976 0.056 0.035 0.017 0.055 0.036 0.018
40 0.008 0.989 0.042 0.026 0.012 0.041 0.027 0.013
50 0.001 0.987 0.032 0.021 0.009 0.032 0.021 0.010
20 −0.003 0.955 0.063 0.039 0.011 0.061 0.038 0.012

1
3

(
1
2

)
30 0.003 0.974 0.042 0.027 0.008 0.041 0.026 0.008
40 −0.004 0.981 0.032 0.019 0.005 0.031 0.019 0.006
50 −0.003 0.984 0.027 0.016 0.005 0.025 0.015 0.004
20 −0.001 0.960 0.056 0.035 0.008 0.057 0.034 0.008

1
4

(
1
3

)
30 −0.001 0.974 0.039 0.021 0.004 0.038 0.022 0.005
40 0.000 0.981 0.028 0.017 0.003 0.028 0.017 0.003
50 −0.005 0.986 0.023 0.014 0.003 0.023 0.013 0.003

MLEs = maximum likelihood estimators.

Table 2: Averages of the approximate MLEs µ̃, σ̃, variances of µ̃, σ̃ and covariances under the Koziol-Green
model

γ (β1) n µ̃ σ̃ µ̂ − µ̃ σ̂ − σ̃ Var(µ̃) Var(σ̃) Cov(µ̃, σ̃) Ṽar(µ̃) Ṽar(σ̃) C̃ov(µ̃, σ̃)
20 0.009 0.970 0.0069 −0.0075 0.120 0.073 0.052 0.129 0.079 0.059

3
5

(
3
2

)
30 0.004 0.979 0.0051 −0.0034 0.071 0.043 0.029 0.075 0.048 0.033
40 0.000 0.976 0.0036 −0.0021 0.051 0.032 0.020 0.053 0.034 0.022
50 −0.004 0.983 0.0030 −0.0013 0.039 0.026 0.015 0.041 0.027 0.017
20 −0.003 0.961 0.0056 −0.0039 0.081 0.051 0.026 0.086 0.055 0.030

1
2

(1)
30 0.006 0.978 0.0037 −0.0019 0.055 0.034 0.016 0.056 0.036 0.018
40 0.006 0.990 0.0027 −0.0011 0.041 0.026 0.012 0.042 0.027 0.013
50 −0.001 0.988 0.0022 −0.0007 0.032 0.021 0.009 0.032 0.021 0.010
20 −0.006 0.957 0.0031 −0.0015 0.062 0.039 0.012 0.062 0.038 0.012

1
3

(
1
2

)
30 0.002 0.975 0.0019 −0.0009 0.042 0.027 0.008 0.042 0.026 0.008
40 −0.005 0.981 0.0015 −0.0004 0.032 0.019 0.005 0.031 0.019 0.006
50 −0.004 0.985 0.0010 −0.0005 0.027 0.016 0.005 0.025 0.015 0.004
20 −0.003 0.961 0.0022 −0.0009 0.055 0.035 0.008 0.057 0.034 0.008

1
4

(
1
3

)
30 −0.003 0.974 0.0013 −0.0004 0.039 0.021 0.004 0.038 0.022 0.005
40 −0.001 0.981 0.0009 −0.0004 0.028 0.017 0.003 0.029 0.017 0.003
50 −0.006 0.986 0.0008 −0.0002 0.023 0.014 0.003 0.023 0.013 0.003

MLEs = maximum likelihood estimators.

We call it P model. The model is closely related to generalized exponential distribution. See Gupta
and Kundu (2007), and Kim (2014a). In this case, the expected censoring ratio is

P(Ti > Ci) =
∫ ∞

−∞
(1 − F(x))dG(x) =

1
β2 + 1

≡ γ.

The model is also considered in Kim (2011). The two models are the same when β1 = β2 = 1.
Tables 1–4 present the simulation results for the sample sizes n = 20, 30, 40, 50, and the censoring

ratio γ = 3/5, 1/2, 1/3, 1/4 with N = 2000 repetitions for each of the censoring model in (4.1) and
(4.2). The data are generated by S-plus package. They are generated with the true value of µ = 0,
σ = 1 without loss of generality by Remark 2 in Section 2. Note that the MLEs of µ and σ are derived
under the assumption that the distribution of the censoring time does not involve any parameters of
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Table 3: Averages of the MLEs µ̂, σ̂, variances of µ̂, σ̂ and covariances under the P model

γ (β2) n µ̂ σ̂ V̂ar(µ̂) V̂ar(σ̂) Ĉov(µ̂, σ̂) V̂ar(µ̂) V̂ar(σ̂) Ĉov(µ̂, σ̂)
20 0.015 0.964 0.107 0.070 0.040 0.120 0.073 0.050

3
5

(
2
3

)
30 0.008 0.975 0.075 0.047 0.030 0.074 0.046 0.029
40 0.005 0.979 0.049 0.033 0.019 0.052 0.032 0.020
50 −0.001 0.983 0.041 0.026 0.016 0.041 0.026 0.015
20 0.020 0.966 0.088 0.053 0.027 0.088 0.058 0.031

1
2

(1)
30 0.012 0.971 0.055 0.035 0.017 0.055 0.036 0.018
40 0.003 0.978 0.042 0.026 0.013 0.040 0.026 0.013
50 0.002 0.986 0.034 0.022 0.011 0.032 0.021 0.010
20 0.010 0.966 0.064 0.041 0.011 0.062 0.042 0.014

1
3

(2)
30 0.017 0.985 0.043 0.028 0.009 0.042 0.028 0.009
40 0.002 0.984 0.030 0.021 0.006 0.031 0.020 0.006
50 0.004 0.982 0.023 0.016 0.005 0.024 0.016 0.005
20 0.001 0.965 0.056 0.037 0.008 0.056 0.036 0.009

1
4

(3)
30 0.008 0.983 0.038 0.025 0.006 0.038 0.024 0.006
40 0.006 0.988 0.026 0.019 0.003 0.028 0.018 0.004
50 0.001 0.985 0.022 0.014 0.003 0.022 0.014 0.003

MLEs = maximum likelihood estimators.

Table 4: Averages of the approximate MLEs µ̃, σ̃, variances of µ̃, σ̃ and covariances under the P model

γ (β2) n µ̃ σ̃ µ̂ − µ̃ σ̂ − σ̃ Var(µ̃) Var(σ̃) Cov(µ̃, σ̃) Ṽar(µ̃) Ṽar(σ̃) C̃ov(µ̃, σ̃)
20 0.010 0.987 0.0044 −0.0229 0.108 0.063 0.042 0.126 0.074 0.053

3
5

(
2
3

)
30 0.004 0.987 0.0041 −0.0122 0.075 0.044 0.030 0.076 0.046 0.030
40 0.002 0.987 0.0030 −0.0082 0.049 0.031 0.019 0.053 0.032 0.020
50 −0.003 0.989 0.0025 −0.0059 0.041 0.025 0.016 0.041 0.025 0.015
20 0.014 0.970 0.0058 −0.0040 0.087 0.051 0.027 0.090 0.058 0.032

1
2

(1)
30 0.008 0.974 0.0037 −0.0021 0.054 0.034 0.017 0.055 0.036 0.018
40 0.001 0.979 0.0026 −0.0011 0.042 0.026 0.013 0.041 0.026 0.013
50 0.000 0.987 0.0022 −0.0007 0.034 0.022 0.011 0.033 0.021 0.010
20 0.007 0.965 0.0029 0.0006 0.063 0.040 0.011 0.063 0.042 0.014

1
3

(2)
30 0.015 0.985 0.0018 0.0005 0.043 0.027 0.009 0.042 0.028 0.009
40 0.001 0.983 0.0012 0.0002 0.030 0.021 0.006 0.031 0.020 0.006
50 0.003 0.981 0.0010 0.0003 0.023 0.016 0.005 0.024 0.016 0.005
20 −0.001 0.965 0.0018 0.0006 0.056 0.036 0.008 0.056 0.036 0.009

1
4

(3)
30 0.007 0.982 0.0011 0.0005 0.038 0.024 0.006 0.038 0.024 0.006
40 0.005 0.988 0.0008 0.0003 0.026 0.019 0.003 0.028 0.018 0.004
50 0.000 0.985 0.0006 0.0002 0.022 0.014 0.003 0.022 0.014 0.003

MLEs = maximum likelihood estimators.

interest, and the two models in (4.1) and (4.2) do not satisfy the assumption. However we usually
do not know the true censoring model in a real situation, and the ratio of the simulated censored data
could hardly be controlled without a censoring model.

Table 1 gives the averages of the MLEs of µ and σ, their variances and covariance by the simula-
tion, and the asymptotic variances and covariance from the inverse of the observed Fisher information
given in (3.5) under the Koziol-Green model in (4.1). The MLEs are computed by the S-plus function
survReg. Table 2 gives the same statistics for the approximate MLEs under the same model. The last
three columns are from the inverse of the approximated observed Fisher information given in (3.6). It
also provides the average differences of the two estimates. In Tables 3 and 4, the same statistics are
given under the P model in (4.2). For true values of σ not equal to 1, the variances and covariances of
µ and σ should be multiplied by σ2 by (3.5) and (3.6).

From Tables 1–4, we observe the following. The average differences between the MLEs and the
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approximate MLEs are negligible. The differences tend to decrease as the sample size increases or
if the censoring ratio becomes smaller. The variances of the estimators, not the mean squared errors,
are provided since the biases of the parameters look very small. All the variances and covariances of
the MLEs and the approximate MLEs are almost identical. The variances and covariances from the
simulation and from the observed Fisher information are also similar. Apparently the approximate
MLEs are as efficient as the MLEs. The variances and covariances also reduce considerably as the
sample size becomes bigger or the censoring ratio becomes smaller. All the same phenomena happen
in both the Koziol-Green model and P model. It seems that the censoring models do not have any
clear influence on the estimation process, since we assumed that the censoring distribution does not
have any information for the parameters. Kim (2016) studied the influence of the assumption for the
censoring model on the estimation for the parameters of a Weibull distribution.

4.2. Example

As an illustrative example, we consider the tumor-free time data of the 30 rats fed with saturated diets.
The data set is to investigate the relationship between diet and the development of tumors. The study
divided 90 rats into three groups and fed them low fat, saturated fat, and unsaturated fat diets. The
data were originally reported by King et al. (1979) and discussed in Lee and Wang (2003).

The data are sorted in order and given below. The other two groups are not shown.

43 46 56 58 68 75 79 81 86 86
89 96 98 105 107 110 117 124 126 133

142 142 165 170+ 200+ 200+ 200+ 200+ 200+ 200+

Lee and Wang (2003, Chapter 8, 9) checked the Cox-Snell residual plot for the fitted lognormal model,
and showed the goodness-of-fit tests based on the asymptotic likelihood inference and the BIC, AIC.
As a result, the lognormal distribution would be selected rather than the exponential or the Weibull
distribution by the procedures.

When we compute the MLEs of the parameters, we have

µ̂ = 4.764583, σ̂ = 0.5605291,
µ̃ = 4.762847, σ̃ = 0.5593185.

The variance-covariance matrices in (3.5) and (3.6) are[
V̂ar(µ̂) Ĉov(µ̂, σ̂)

Ĉov(µ̂, σ̂) V̂ar(σ̂)

]
=

[
0.01127 0.001401
0.001401 0.007777

]
,[

Ṽar(µ̃) C̃ov(µ̃, σ̃)
C̃ov(µ̃, σ̃) Ṽar(σ̃)

]
=

[
0.01140 0.001500
0.001500 0.007818

]
.

We can see that the results are very close each other.

5. Concluding remarks

In this study, the approximate MLEs for a normal distribution under random censoring are proposed
by linearizing the nonlinear functions in the likelihood equations. As results, they give an explicit
form and need no iterations contrary to the MLEs. In addition, the approximate MLEs are as efficient
as the MLEs in terms of biases and variances from the simulation study. As for censoring models, we
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considered the Koziol-Green model and P model. Apparently, the censoring models do not have clear
influence on the estimation process since we assumed that the censoring distribution does not involve
any parameters of interest and ignore the information contained in the censoring model.

This paper assumes no covariates, and the problem with covariates remains a good research topic
for studying.
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