• Title/Summary/Keyword: Approximate function

Search Result 656, Processing Time 0.032 seconds

Estimation of the exponentiated half-logistic distribution based on multiply Type-I hybrid censoring

  • Jeon, Young Eun;Kang, Suk-Bok
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.1
    • /
    • pp.47-64
    • /
    • 2020
  • In this paper, we derive some estimators of the scale parameter of the exponentiated half-logistic distribution based on the multiply Type-I hybrid censoring scheme. We assume that the shape parameter λ is known. We obtain the maximum likelihood estimator of the scale parameter σ. The scale parameter is estimated by approximating the given likelihood function using two different Taylor series expansions since the likelihood equation is not explicitly solved. We also obtain Bayes estimators using prior distribution. To obtain the Bayes estimators, we use the squared error loss function and general entropy loss function (shape parameter q = -0.5, 1.0). We also derive interval estimation such as the asymptotic confidence interval, the credible interval, and the highest posterior density interval. Finally, we compare the proposed estimators in the sense of the mean squared error through Monte Carlo simulation. The average length of 95% intervals and the corresponding coverage probability are also obtained.

An Edge Detection Method for Gray Scale Images Based on their Fuzzy System Representation

  • Moon, Byung-Soo;Lee, Hyun-Chul;Kim, Jang-Yeol
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.283-286
    • /
    • 2001
  • Based on a fuzzy system representation of gray scale images, we derive an edge detection algorithm whose convolution kernel is different from the known kernels such as those of Roberts', Prewitt's or Sobel's gradient. Our fuzzy system representation is an exact representation of the bicubic spline function which represents the gray scale image approximately. Hence the fuzzy system is a continuous function and it provides a natural way to define the gradient and the Laplacian operator. We show that the gradient at grid points can be evaluated by taking the convolution of the image with a 3 3 kernel. We also show that our gradient coupled with the approximate value of the continuous function generates an edge detection method which creates edge images clearer than those by other methods. A few examples of applying our methods are included.

  • PDF

On-line process identification for cascade control system (Cascade 제어를 위한 실시간 공정 식별법)

  • 박흥일;성수환;이인범
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1412-1415
    • /
    • 1996
  • In this paper, a new identification method of the cascade control system is proposed which can overcome the weak points of Krishnaswamy and Rangaiah(1987)'s method. This new method consists of two steps. One is on-line process identification using the numerical integration to approximate the two process dynamics with a high order linear transfer function. The other is a model reduction technique to derive out low order transfer function(FOPTD or SOPTD) from the obtained high order linear transfer function to tune the controller using usual tuning rules. While the proposed method preserves the advantages of the Krishnaswamy and Rangaiah(1987)'s method, it has such a simplicity that it requires only measured input and output data and simple least-squares technique. Simulation results show that the proposed method can be a promising alternative in the identification of cascade control systems.

  • PDF

A Far Field Solution of the Slowly Varying Drift Force on the Offshore Structure in Bichromatic Waves-Three Dimensional Problems

  • Lee, Sang-Moo
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.1-6
    • /
    • 2010
  • A far field approximate solution of the slowly varying force on a 3 dimensional offshore structure in gravity ocean waves is presented. The first order potential, or at least the far field form of the Kochin function, of each frequency wave is assumed to be known. The momentum flux of the fluid domain is formulated to find the time variant force acting on the floating body in bichromatic waves. The second order difference frequency force is identified and extracted from the time variant force. The final solution is expressed as the circular integration of the product of Kochin functions. The limiting form of the slowly varying force is identical to the mean drift force. It shows that the slowly varying force components caused by the body disturbance potential can be evaluated at the far field.

Estimation of entropy of the inverse weibull distribution under generalized progressive hybrid censored data

  • Lee, Kyeongjun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.3
    • /
    • pp.659-668
    • /
    • 2017
  • The inverse Weibull distribution (IWD) can be readily applied to a wide range of situations including applications in medicines, reliability and ecology. It is generally known that the lifetimes of test items may not be recorded exactly. In this paper, therefore, we consider the maximum likelihood estimation (MLE) and Bayes estimation of the entropy of a IWD under generalized progressive hybrid censoring (GPHC) scheme. It is observed that the MLE of the entropy cannot be obtained in closed form, so we have to solve two non-linear equations simultaneously. Further, the Bayes estimators for the entropy of IWD based on squared error loss function (SELF), precautionary loss function (PLF), and linex loss function (LLF) are derived. Since the Bayes estimators cannot be obtained in closed form, we derive the Bayes estimates by revoking the Tierney and Kadane approximate method. We carried out Monte Carlo simulations to compare the classical and Bayes estimators. In addition, two real data sets based on GPHC scheme have been also analysed for illustrative purposes.

Evolutionary Computation Approach to Wiener Model Identification

  • Oh, Kyu-Kwon;Okuyama, Yoshifumi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.33.1-33
    • /
    • 2001
  • We address a novel approach to identify a nonlinear dynamic system for Wiener models, which are composed of a linear dynamic system part followed by a nonlinear static part. The aim of system identification here is to provide the optimal mathematical model of both the linear dynamic and the nonlinear static parts in some appropriate sense. Assuming the nonlinear static part is invertible, we approximate the inverse function by a piecewise linear function. We estimate the piecewise linear inverse function by using the evolutionary computation approach such as genetic algorithm (GA) and evolution strategies (ES), while we estimate the linear dynamic system part by the least squares method. The results of numerical simulation studies indicate the usefulness of proposed approach to the Wiener model identification.

  • PDF

Forecasting and precision on using multi-layer neural network

  • Zhu, Hanxi;Aoyama, Tomoo;Yoshihara, Ikuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.218-221
    • /
    • 1999
  • Forecasting and extrapolation for time dependent phenomena by using Multi layer neural network has been studied. We calculated values of a function at short intervals, and made one dimensional vector whose elements were a partial gather of the values. If there is anything same as the future of the functions exists in the fragment set, it is possible for us to have an advanced precision extrapolation. Otherwise, if the approximate function of the primitive function can be constructed by teaming the short interval in the network, the precision of extrapolation also can be well realized.

  • PDF

Flows in a confined cylindrical container with differential rotating top and bottom disks (속도차를 갖는 두 회전판에 의해 유도되는 원통 내부 유동)

  • Park, Jun-Sang
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.487-490
    • /
    • 2008
  • A theoretical study is made of the flow in a confined cylindrical container with differential rotating top and bottom disks. Two kinds of theoretical solution for the azimuthal velocity were obtained: one is an exact solution of Bessel function type and the other is an approximate solution of exponential function type which comes from WKB approximation. Both theoretical solutions are shown to be self consistent with each other as well as a good agreement with previous studies. Moreover, in a range of relatively low Reynolds number, the obtained solution of Bessel function type shows better result than previous solutions.

  • PDF

GAUSSIAN QUADRATURE FORMULAS AND LAGUERRE-PERRON@S EQUATION

  • HAJJI S. EL;TOUIJRAT L.
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.205-228
    • /
    • 2005
  • Let I(f) be the integral defined by : $I(f) = \int\limits_{a}^{b} f(x)w(x)dx$ with f a given function, w a nonclassical weight function and [a, b] an interval of IR (of finite or infinite length). We propose to calculate the approximate value of I(f) by using a new scheme for deriving a non-linear system, satisfied by the three-term recurrence coefficients of semi-classical orthogonal polynomials. Finally we studies the Stability and complexity of this scheme.

An Alternative Point-Matching Technique for Fredholm Integral Equations of Second Kind (제2종 Rredholm 적분방정식의 새로운 수식해법)

  • 이직열;김정기
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.5
    • /
    • pp.83-86
    • /
    • 1985
  • An alternative technique (or the numerical solution of Fredholm integral equations of second kind is presented. The approximate solution is obtained by fitting the data in mixed form at knots in the region of the problem. To decrease the error in the numerical solution, cubic B-spline functions which are twice continuously differentiable at knots are employed as basis function. For a given example, the results of this technique are compared with those of Moment method employing pulse functions for basis function and delta functions for test function and found to br in good agreement.

  • PDF