• Title/Summary/Keyword: Approximate analytic method

Search Result 36, Processing Time 0.019 seconds

NEW ANALYTIC APPROXIMATE SOLUTIONS TO THE GENERALIZED REGULARIZED LONG WAVE EQUATIONS

  • Bildik, Necdet;Deniz, Sinan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.749-762
    • /
    • 2018
  • In this paper, the new optimal perturbation iteration method has been applied to solve the generalized regularized long wave equation. Comparing the new analytic approximate solutions with the known exact solutions reveals that the proposed technique is extremely accurate and effective in solving nonlinear wave equations. We also show that,unlike many other methods in literature, this method converges rapidly to exact solutions at lower order of approximations.

A Practical Analysis Method for the Design of Piled Raft Foundations (말뚝지지 전면기초의 실용적 근사해석법 개발)

  • Song, Young Hun;Song, Myung Jun;Jung, Min Hyung;Park, Yung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.83-91
    • /
    • 2017
  • In case of estimation of settlement for the piled-raft foundation, it is necessary to consider interaction among raft, piles and soil. But, simple analytic methods usually are not applicable to considering this complicated interaction. In this study, a computer-based approximate analytic method, HDPR, was developed in consideration of above mentioned interaction in order to analysis of settlement for the piled-raft foundation. The finite element method was applied to raft analysis by means of the Mindlin plate theory, and soil and piles were modeled as springs which were connected with their raft. The linear spring which can consider multi layered soil and the non-linear spring were applied to soil springs and pile springs, respectively. The raft-piles-soil interaction was reflected to each spring. In order to verify the developed analytic method, it was compared and analyzed with 3D FEM analysis, existing approximate analytic method and site monitoring data. As a result, the developed analytic method showed reasonable results of settlement estimations of raft and piles for each case. From a practical point of view, it is confirmed that this analytic method is able to apply for analysis and design of the piled-raft foundation.

APPROXIMATE REACHABLE SETS FOR RETARDED SEMILINEAR CONTROL SYSTEMS

  • KIM, DAEWOOK;JEONG, JIN-MUN
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.5_6
    • /
    • pp.469-481
    • /
    • 2020
  • In this paper, we consider a control system for semilinear differential equations in Hilbert spaces with Lipschitz continuous nonlinear term. Our method is to find the equivalence of approximate controllability for the given semilinear system and the linear system excluded the nonlinear term, which is based on results on regularity for the mild solution and estimates of the fundamental solution.

Analysis of Two-Dimensional Transient Heat Conduction Problems in a Finite Strip by the Heat Balance Integral Method (熱平衡積分法에 의한 有限 Strip에서의 2次元 過渡熱傳導 問題의 解析)

  • 서정일;조진호;조종철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.4
    • /
    • pp.417-424
    • /
    • 1983
  • This paper presents two methods of obtaining approximate analytic solutions for the temperature distributions and heat flow to two-dimensional transient heat conduction problems in a finite strip with constant thermal properties using the Heat Balance Integral. The methods introduced in this study are as follows; one using the Heat Balance Integral only, and the other successively using the Heat Balance Integral and an exact analytic method. Both methods are applicable to a large number of the two-dimensional unsteady conduction problems in finite regions such as extended surfaces with uniform thickness, but in this paper only solutions for the unsteady problems in a finite strip with boundary condition at the base expressed in terms of step function are provided as an illustration. Results obtained by both methods are compared with those by the exact two-dimensional transient analysis. It is found that both approximate methods generate small time solutions, which can not be obtained easily by any exact analytic method for small values of Fourier numbers. In the case of applying the successive use of the Heat Balance Integral and Laplace transforms, the analysis shows good agreement with the exact solutions for any Fourier number in the range of Biot numbers less than 0.5.

Approximate Cell Loss Performance in ATM Networks: In Comparison with Exact Results

  • Lee, Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.4A
    • /
    • pp.489-495
    • /
    • 2000
  • In this paper we propose an approximate method to estimate the cell loss probability(CLP) due to buffer overflow in ATM networks. The main idea is to relate the buffer capacity with the CLP target in explicit formula by using the approximate upper bound for the tail distribution of a queue. The significance of the proposition lies in the fact that we can obtain the expected CLP by using only the source traffic data represented by mean rate and its variance. To that purpose we consider the problem of estimating the cell loss measures form the statistical viewpoint such that the probability of cell loss due to buffer overflow does not exceed a target value. In obtaining the exact solution we use a typical matrix analytic method for GI/D/1B queue where B is the queue size. Finally, in order to investigate the accuracy of the result, we present both the approximate and exact results of the numerical computation and give some discussion.

  • PDF

A Design of Engine Exhaust Ejector for Smart UAV (스마트무인기의 엔진 배기이젝터 설계에 관한 연구)

  • Lee, Chang-Ho;Kim, Jai-Moo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.403-406
    • /
    • 2006
  • An ejector is designed for the purpose of engine bay cooling. The primary flow of the ejector is the exhaust gas of the PW206C turboshaft engine. The mass flow of secondary flow is calculated by using the approximate analytic equation. For the purpose of verification of approximate analytic method, comparison is made with the results of Navier-Stokes turbulent flow solution. According to the results of CFD, the mixing of two flows is incomplete due to the short length of mixing duct.

  • PDF

Approximate Solution of Vertical Wave Board Oscillating in Submerged Condition and Its Design Application (수직 평판 요소의 수중동요 근사해와 설계 적용)

  • Oh, Jungkeun;Kim, Ju-Yeol;Kim, Hyochul;Kwon, Jongho;Lew, Jae-Moon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.6
    • /
    • pp.527-534
    • /
    • 2018
  • The segment of the piston type wave board has been expressed as a submerged vertical line segment in the two dimensional wave flume. Either end of vertical line segment representing wave board could be located in fluid domain from free surface to the bottom of the flume. Naturally the segment could be extended from the bottom to the free surface of the flume. It is assumed that the piston motion of the wave board could be defined by the sinusoidal oscillation in horizontal direction. Simplified analytic solution of the submerged segment of wave board has been derived through the first order perturbation method in water of finite depth. The analytic solution has been utilized in expressing the wave generated by the piston type wave board installed on the upper or lower half of the flume. The wave form derived by the analytic solution have been compared with the wave profile obtained through the CFD calculation for the either of the above cases. It is appeared that the wave length and the wave height are coincided each other between analytic solution and CFD calculation. However the wave form obtained by CFD calculations are more closer to real wave form than those from analytic calculation. It is appeared that the linear solutions could be not only superposed by segment but also integrated by finite elements without limitation. Finally it is proven that the wave generated by the oscillation of flap type wave board could be derived by integrating the wave generated by the sinusoidal motion of the finite segment of the piston type wave board.

An Application of Homogenization Theory to the Coarse-Mesh Nodal Calculation of PWRs (PWR 소격격자 Nodal 계산에의 균질화 이론 적용)

  • Myung Hyun Kim;Jonghwa Chang;Kap Suk Moon;Chang Kun Lee
    • Nuclear Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.202-216
    • /
    • 1984
  • The success of coarse-mesh nodal solution methods provides strong motivation for finding homogenized parameters which, when used in global nodal calculation, will reproduce exactly all average nodal reaction rates for large nodes. Two approximate theories for finding these ideal parameters, namely, simplified equivalence theory and approximate node equivalence theory, are described herein and then applied to the PWR benchmark problem. Nodal code, ANM, is used for the global calculation as well as for the homogenization calculation. From the comparative analysis, it is recommended that homogenization be carried out only for the unique type of fuel assemblies and for core boundary color-sets. The use of approximate homogenized cross-sections and approximate discontinuity factors predicts nodal powers with maximum error of 0.8% and criticality within 0.1% error relative to the fine-mesh KIDD calculations.

  • PDF

A Nonlinear Navigation Filter for Biomimetic Robot (생체모방 로봇을 위한 비선형 항법 필터)

  • Seong, Sang-Man
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.175-180
    • /
    • 2012
  • A nonlinear navigation filter for biomimetic robot using analytic approximation of mean and covariance of state variable is proposed. The approximations are performed at the time update step in the filter structure. The mean is approximated to the 3rd order of Taylor's series expansion of true mean and the covariance is approximated to the 3rd order either. The famous EKF is a nonlinear filtering method approximating the mean to 1st order and the covariance to the 3rd order. The UKF approximate them to the higher orders by numerical method. The proposed method derived a analytical approximation of them for navigation system and therefore don't need so called sigma point transformation in UKF. The simulation results show that the proposed method can be a good alternative of UKF in the systems which require less computational burden.

Trapezoidal Fin : Comparison of Heat Loss with Rectangular Fin and the Effect of Slope Factor on the Heat Loss (사다리꼴 fin: 사각 fin과의 열손실 비교와 열손실에 미치는 경사요소의 효과)

  • Kang, Hyung-Suk;Youn, Sea-Chang
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.33-40
    • /
    • 2001
  • Heat loss from the trapezoidal fins haying different upper side slope and that from a rectangular fin are investigated by the three dimensional analytic method. It is shown that the trapezoidal fins having different upper side slope become an approximate rectangular fin by inst adjusting the slope factor. The comparison of the heat loss between a rectangular fin and an approximate rectangular fin is represented as a function of the non-dimensional fin length, fin width and Biot number to make sure that the analysis on the trapezoidal fins having different upper side slope is countable. One of the results is that the relative value of heat loss between a rectangular fin and an approximate rectangular fin is less than 1.5% for given ranges of non-dimensional length and width in case of Bi = 0.1.

  • PDF