• Title/Summary/Keyword: Approximate Solutions

Search Result 416, Processing Time 0.024 seconds

Estimation for Two-Parameter Rayleigh Distribution Based on Multiply Type-II Censored Sample

  • Han, Jun-Tae;Kang, Suk-Bok
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.4
    • /
    • pp.1319-1328
    • /
    • 2006
  • For multiply Type-II censored samples from two-parameter Rayleigh distribution, the maximum likelihood method does not admit explicit solutions. In this case, we propose some explicit estimators of the location and scale parameters in the Rayleigh distribution by the approximate maximum likelihood methods. We compare the proposed estimators in the sense of the mean squared error for various censored samples.

  • PDF

CONTROLLABILITY FOR TRAJECTORIES OF SEMILINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Jeong, Jin-Mun;Kang, Yong Han
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.63-79
    • /
    • 2018
  • In this paper, we first consider the existence and regularity of solutions of the semilinear control system under natural assumptions such as the local Lipschtiz continuity of nonlinear term. Thereafter, we will also establish the approximate controllability for the equation when the corresponding linear system is approximately controllable.

Estimation for the Power Function Distribution Based on Type- II Censored Samples

  • Kang, Suk-Bok;Jung, Won-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1335-1344
    • /
    • 2008
  • The maximum likelihood method does not admit explicit solutions when the sample is multiply censored and progressive censored. So we shall propose some approximate maximum likelihood estimators (AMLEs) of the scale parameter for the power function distribution based on multiply Type-II censored samples and progressive Type-II censored samples when shape parameter is known. We compare the proposed estimators in the sense of the mean squared error (MSE) through Monte Carlo simulation for various censoring schemes.

  • PDF

Estimation in a Half-Triangle Distribution Based on Multiply Type-II Censored Samples

  • Kang, Suk-Bok
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.3
    • /
    • pp.793-801
    • /
    • 2007
  • For multiply Type-II censored samples from a half-triangle distribution, the maximum likelihood method does not admit explicit solutions. In this case, we propose some explicit estimators of the location parameter in the half-triangle distribution by the approximate maximum likelihood methods. We compare the proposed estimators in the sense of the mean squared error for various censored samples.

  • PDF

PERFORMANCE OF LIMITERS IN MODAL DISCONTINUOUS GALERKIN METHODS FOR 1-D EULER EQUATIONS (1-D 오일러 방정식에 관한 Modal 불연속 갤러킨 기법에서의 Limiter 성능 비교)

  • Karchani, A.;Myong, R.S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.1-11
    • /
    • 2016
  • Considerable efforts are required to develop a monotone, robust and stable high-order numerical scheme for solving the hyperbolic system. The discontinuous Galerkin(DG) method is a natural choice, but elimination of the spurious oscillations from the high-order solutions demands a new development of proper limiters for the DG method. There are several available limiters for controlling or removing unphysical oscillations from the high-order approximate solution; however, very few studies were directed to analyze the exact role of the limiters in the hyperbolic systems. In this study, the performance of the several well-known limiters is examined by comparing the high-order($p^1$, $p^2$, and $p^3$) approximate solutions with the exact solutions. It is shown that the accuracy of the limiter is in general problem-dependent, although the Hermite WENO limiter and maximum principle limiter perform better than the TVD and generalized moment limiters for most of the test cases. It is also shown that application of the troubled cell indicators may improve the accuracy of the limiters under some specific conditions.

Some Recent Results of Approximation Algorithms for Markov Games and their Applications

  • 장형수
    • Proceedings of the Korean Society of Computational and Applied Mathematics Conference
    • /
    • 2003.09a
    • /
    • pp.15-15
    • /
    • 2003
  • We provide some recent results of approximation algorithms for solving Markov Games and discuss their applications to problems that arise in Computer Science. We consider a receding horizon approach as an approximate solution to two-person zero-sum Markov games with an infinite horizon discounted cost criterion. We present error bounds from the optimal equilibrium value of the game when both players take “correlated” receding horizon policies that are based on exact or approximate solutions of receding finite horizon subgames. Motivated by the worst-case optimal control of queueing systems by Altman, we then analyze error bounds when the minimizer plays the (approximate) receding horizon control and the maximizer plays the worst case policy. We give two heuristic examples of the approximate receding horizon control. We extend “parallel rollout” and “hindsight optimization” into the Markov game setting within the framework of the approximate receding horizon approach and analyze their performances. From the parallel rollout approach, the minimizing player seeks to combine dynamically multiple heuristic policies in a set to improve the performances of all of the heuristic policies simultaneously under the guess that the maximizing player has chosen a fixed worst-case policy. Given $\varepsilon$>0, we give the value of the receding horizon which guarantees that the parallel rollout policy with the horizon played by the minimizer “dominates” any heuristic policy in the set by $\varepsilon$, From the hindsight optimization approach, the minimizing player makes a decision based on his expected optimal hindsight performance over a finite horizon. We finally discuss practical implementations of the receding horizon approaches via simulation and applications.

  • PDF

Analysis of Shallow-Water Equations with HLLC Approximate Riemann Solver (HLLC Approximate Riemann Solver를 이용한 천수방정식 해석)

  • Kim, Dae-Hong;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.10
    • /
    • pp.845-855
    • /
    • 2004
  • The propagation and associated run-up process of nearshore tsunamis in the vicinity of shorelines have been analyzed by using a two-dimensional numerical model. The governing equations of the model are the nonlinear shallow-water equations. They are discretized explicitly by using a finite volume method and the numerical fluxes are reconstructed with a HLLC approximate Riemann solver and weighted averaged flux method. The model is applied to two problems; The first problem deals with water surface oscillations, while the second one simulates the propagation and subsequent run-up process of nearshore tsunamis. Predicted results have been compared to available analytical solutions and laboratory measurements. A very good agreement has been observed.

Vibration analysis of a beam on a nonlinear elastic foundation

  • Karahan, M.M. Fatih;Pakdemirli, Mehmet
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.171-178
    • /
    • 2017
  • Nonlinear vibrations of an Euler-Bernoulli beam resting on a nonlinear elastic foundation are discussed. In search of approximate analytical solutions, the classical multiple scales (MS) and the multiple scales Lindstedt Poincare (MSLP) methods are used. The case of primary resonance is investigated. Amplitude and phase modulation equations are obtained. Steady state solutions are considered. Frequency response curves obtained by both methods are contrasted with each other with respect to the effect of various physical parameters. For weakly nonlinear systems, MS and MSLP solutions are in good agreement. For strong hardening nonlinearities, MSLP solutions exhibit the usual jump phenomena whereas MS solutions are not reliable producing backward curves which are unphysical.

Approximating Coupled Solutions of Coupled PBVPs of Non-linear First Order Ordinary Differential Equations

  • Dhage, Bapurao Chandrabhan
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.1
    • /
    • pp.221-233
    • /
    • 2016
  • The present paper proposes a new monotone iteration method for existence as well as approximation of the coupled solutions for a coupled periodic boundary value problem of first order ordinary nonlinear differential equations. A new hybrid coupled fixed point theorem involving the Dhage iteration principle is proved in a partially ordered normed linear space and applied to the coupled periodic boundary value problems for proving the main existence and approximation results of this paper. An algorithm for the coupled solutions is developed and it is shown that the sequences of successive approximations defined in a certain way converge monotonically to the coupled solutions of the related differential equations under some suitable mixed hybrid conditions. A numerical example is also indicated to illustrate the abstract theory developed in the paper.